References
- Abdelbari, S., Amar, L.H.H., Kaci, A. and Tounsi, A. (2018), "Single variable shear deformation model for bending analysis of thick beams", Struct. Eng. Mech., Int. J., 67(3), 291-300. http://dx.doi.org/10.12989/sem.2018.67.3.291
- Adhikary, S.D., Li, B. and Fujikake, K. (2012), "Dynamic behavior of reinforced concrete beams under varying rates of concentrated loading", Int. J. Impact Eng., 47, 24-38. https://doi.org/10.1016/j.ijimpeng.2012.02.001
- Bebiano, R., Calcada, R., Camotim, D. and Silvestre, N. (2017), "Dynamic analysis of high-speed railway bridge decks using generalised beam theory", Thin-Wall. Struct.res, 114, 22-31. https://doi.org/10.1016/j.tws.2017.01.027
- Berggren, S.A., Lukkassen, D., Meidell, A. and Simula, L. (2003), "Some methods for calculating stiffness properties of periodic structures", Applica. Math., 48(2), 97-110. https://doi.org/10.1023/A:1026090026531
- Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., Int. J., 19(3), 521-546. http://dx.doi.org/10.12989/scs.2015.19.3.521
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. http://dx.doi.org/10.12989/scs.2015.18.2.409
- Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Bedia, E.A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Compos. Struct., Int. J., 15(5), 467-479. http://dx.doi.org/10.12989/scs.2013.15.5.467
- Cortes, C., Osorno, M., Uribe, D., Steeb, H., Ruiz-Salguero, O., Barandiaran, I. and Florez, J. (2019), "Geometry simplification of open-cell porous materials for elastic deformation FEA", Eng. Comput., 35, 257-276. https://doi.org/10.1007/s00366-018-0597-3
- De Pasquale, G., Veijola, T. and Soma, A. (2009), "Modelling and validation of air damping in perforated gold and silicon MEMS plates", J. Micromech. Microeng., 20(1), 015010. https://doi.org/10.1088/0960-1317/20/1/015010
- Driz, H., Benchohra, M., Bakora, A., Benachour, A., Tounsi, A. and Bedia, E.A.A. (2018), "A new and simple HSDT for isotropic and functionally graded sandwich plates", Steel Compos. Struct., Int. J., 26(4), 387-405. http://dx.doi.org/10.12989/scs.2018.26.4.387
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Computat., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016
- Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014a), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Math. Computat., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028
- Eltaher, M.A., Hamed, M.A., Sadoun, A.M. and Mansour, A. (2014b), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Computat., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64. 10.12989/anr.2016.4.1.051
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018a), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
- Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018b), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3
- Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2017), "Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams", Int. J. Eng. Sci., 120, 51-62. https://doi.org/10.1016/j.ijengsci.2017.03.010
- Greco, A., Pluchino, A., Caddemi, S., Calio, I. and Cannizzaro, P. (2019), "On profile reconstruction of Euler-Bernoulli beams by means of an energy based genetic algorithm", Eng. Comput.
- Guha, K., Kumar, M., Agarwal, S. and Baishya, S. (2015), "A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam", Solid-State Electronics, 114, 35-42. https://doi.org/10.1016/j.sse.2015.07.008
- Guha, K., Laskar, N.M., Gogoi, H.J., Borah, A.K., Baishnab, K.L. and Baishya, S. (2017), "Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect", Solid-State Electronics, 137, 85-94. https://doi.org/10.1016/j.sse.2017.08.007
- Guha, K., Laskar, N.M., Gogoi, H.J., Baishnab, K.L. and Rao, K.S. (2018), "A new analytical model for switching time of a perforated MEMS switch", Microsyst. Technol., 1-10.
- Gul, U., Aydogdu, M. and Karacam, F. (2019), "Dynamics of a functionally graded Timoshenko beam considering new spectrums", Compos. Struct., 207, 273-291. https://doi.org/10.1016/j.compstruct.2018.09.021
- Han, S.M., Benaroya, H. and Wei, T. (1999), "Dynamics of transversely vibrating beams using four engineering theories", J. Sound Vib., 225(5), 935-988. https://doi.org/10.1006/jsvi.1999.2257
- Heidari, A., Keikha, R., Haghighi, M.S. and Hosseinabadi, H. (2018), "Numerical study for vibration response of concrete beams reinforced by nanoparticles", Struct. Eng. Mech., Int. J., 67(3), 311-316. https://doi.org/10.12989/sem.2018.67.3.311
- Hopcroft, M.A., Nix, W.D. and Kenny, T.W. (2010), "What is the Young's modulus of silicon?", J. Microelectromech. Syst., 19, 229-238. https://doi.org/10.1109/JMEMS.2009.2039697
- Inman, D.J. (2014), Engineering Vibration, (4th ed.), Pearson, Pearson Education.
- Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029
- Katariya, P.V. and Panda, S.K. (2018), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. Comput., 1-18.
- Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimensional Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021
- Kim, J.H., Jeon, J.H., Park, J.S., Seo, H.D., Ahn, H.J. and Lee, J.M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", Int. J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016
- Kim, T., Park, I. and Lee, U. (2017), "Forced vibration of a Timoshenko beam subjected to stationary and moving loads using the modal analysis method", Shock Vib.
- Lee, Y.Y. (2016), "The effect of leakage on the sound absorption of a nonlinear perforated panel backed by a cavity", Int. J. Mech. Sci., 107, 242-252. https://doi.org/10.1016/j.ijmecsci.2016.01.019
- Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341
- Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams" J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004
- Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B: Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085
- Nikkhoo, A., Rofooei, F.R. and Shadnam, M.R. (2007), "Dynamic behavior and modal control of beams under moving mass", J. Sound Vib., 306(3-5), 712-724. https://doi.org/10.1016/j.jsv.2007.06.008
- Pedersen, M., Olthuis, W. and Bergveld, P. (1996), "On the mechanical behaviour of thin perforated plates and their application in silicon condenser microphones", Sensors Actuators A: Phys., 54(1-3), 499-504. https://doi.org/10.1016/S0924-4247(95)01189-7
- Rajasekaran, S. (2018), "Analysis of axially functionally graded nano-tapered Timoshenko beams by element-based Bernstein pseudospectral collocation (EBBPC)", Eng. Comput., 34(3), 543-563. https://doi.org/10.1007/s00366-017-0557-3
- Rao, S.S. (2007), Vibration of Continuous Systems, John Wiley & Sons.
- Rouhi, H., Ebrahimi, F., Ansari, R. and Torabi, J. (2019), "Nonlinear free and forced vibration analysis of Timoshenko nanobeams based on Mindlin's second strain gradient theory", Eur. J. Mech.-A/Solids, 73, 268-281. https://doi.org/10.1016/j.euromechsol.2018.09.005
- Shafiei, N. and She, G.L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98. https://doi.org/10.1016/j.ijengsci.2018.08.004
- She, G.L., Yuan, F.G. and Ren, Y.R. (2017), "Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory", Appl. Math. Model., 47, 340-357. https://doi.org/10.1016/j.apm.2017.03.014
- She, G.L., Ren, Y.R., Xiao, W.S. and Liu, H.B. (2018a), "Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations", Struct. Eng. Mech., Int. J., 66(6), 729-736.
- She, G.L., Yan, K.M., Zhang, Y.L., Liu, H.B. and Ren, Y.R. (2018b), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 368. https://doi.org/10.1140/epjp/i2018-12196-5
- Sinir, S., Cevik, M. and Sinir, B.G. (2018), "Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section", Compos. Part B: Eng., 148, 123-131. https://doi.org/10.1016/j.compositesb.2018.04.061
- Song, Y., Kim, T. and Lee, U. (2016), "Vibration of a beam subjected to a moving force: Frequency-domain spectral element modeling and analysis", Int. J. Mech. Sci., 113, 162-174. https://doi.org/10.1016/j.ijmecsci.2016.04.020
- Tekili, S., Khadri, Y., Merzoug, B., Daya, E.M. and Daouadji, A. (2017), "Free and Forced Vibration of Beams Strengthened by Composite Coats Subjected to Moving Loads", Mech. Compos. Mater., 52(6), 789-798. https://doi.org/10.1007/s11029-017-9630-7
- Thai, S., Thai, H.T., Vo, T.P. and Patel, V.I. (2018), "A simple shear deformation theory for nonlocal beams", Compos. Struct., 183, 262-270. https://doi.org/10.1016/j.compstruct.2017.03.022
- Tu, W.H., Chu, W.C., Lee, C.K., Chang, P.Z. and Hu, Y.C. (2013), "Effects of etching holes on complementary metal oxide semiconductor-microelectromechanical systems capacitive structure", J. Intel. Mater. Syst. Struct., 24(3), 310-317. https://doi.org/10.1177/1045389X12449917
Cited by
- Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads vol.34, pp.1, 2019, https://doi.org/10.12989/scs.2020.34.1.075
- Buckling and stability analysis of sandwich beams subjected to varying axial loads vol.34, pp.2, 2019, https://doi.org/10.12989/scs.2020.34.2.241
- Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.225
- On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
- Forced vibration of a functionally graded porous beam resting on viscoelastic foundation vol.24, pp.1, 2019, https://doi.org/10.12989/gae.2021.24.1.091
- Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2019, https://doi.org/10.12989/gae.2021.24.6.545
- Transient response of functionally graded non-uniform cylindrical helical rods vol.40, pp.4, 2021, https://doi.org/10.12989/scs.2021.40.4.571
- Experimental studies on vibration serviceability of composite steel-bar truss slab with steel girder under human activities vol.40, pp.5, 2019, https://doi.org/10.12989/scs.2021.40.5.663