• Title/Summary/Keyword: thick oxide reliability

Search Result 14, Processing Time 0.028 seconds

Reliability of Multiple Oxides Integrated with thin $HfSiO_x$ gate Dielectric on Thick $SiO_2$ Layers

  • Lee, Tae-Ho;Lee, B.H.;Kang, C.Y.;Choi, R.;Lee, Jack-C.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.25-29
    • /
    • 2008
  • Reliability and performance in metal gate/high-k device with multiple gate dielectrics were investigated. MOSFETs with a thin $HfSiO_x$ layer on a thermal Si02 dielectric as gate dielectrics exhibit excellent mobility and low interface trap density. However, the distribution of threshold voltages of $HfSiO_x/SiO_2$ stack devices were wider than those of $SiO_2$ and $HfSiO_x$ single layer devices due to the penetration of Hf and/or intermixing of $HfSiO_x$ with underlying $SiO_2$. The results of TZDB and SILC characteristics suggested that a certain portion of $HfSiO_x$ layer reacted with the underlying thick $SiO_2$ layer, which in turn affected the reliability characteristics.

  • PDF

Reliability Analysis for Deuterium Incorporated Gate Oxide Film through Negative-bias Temperature Instability and Hot-carrier Injection (Negative-bias Temperature Instability 및 Hot-carrier Injection을 통한 중수소 주입된 게이트 산화막의 신뢰성 분석)

  • Lee, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.687-694
    • /
    • 2008
  • This paper is focused on the improvement of MOS device reliability related to deuterium process. The injection of deuterium into the gate oxide film was achieved through two kind of method, high-pressure annealing and low-energy implantation at the back-end of line, for the purpose of the passivation of dangling bonds at $SiO_2/Si$ interface. Experimental results are presented for the degradation of 3-nm-thick gate oxide ($SiO_2$) under both negative-bias temperature instability (NBTI) and hot-carrier injection (HCI) stresses using P and NMOSFETs. Annealing process was rather difficult to control the concentration of deuterium. Because when the concentration of deuterium is redundant in gate oxide excess traps are generated and degrades the performance, we found annealing process did not show the improved characteristics in device reliability, compared to conventional process. However, deuterium ion implantation at the back-end process was effective method for the fabrication of the deuterated gate oxide. Device parameter variations under the electrical stresses depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to conventional process. Our result suggests the novel method to incorporate deuterium in the MOS structure for the reliability.

Degradation of Ultra-thin SiO2 film Incorporated with Hydrogen or Deuterium Bonds during Electrical Stress (수소 및 중수소가 포함된 실리콘 산화막의 전기적 스트레스에 의한 열화특성)

  • Lee, Jae-sung;Back, Jong-mu;Jung, Young-chul;Do, Seung-woo;Lee, Yong-hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.996-1000
    • /
    • 2005
  • Experimental results are presented for the degradation of 3 nm-thick gate oxide $(SiO_2)$ under both Negative-bias Temperature Instability (NBTI) and Hot-carrier-induced (HCI) stresses using P and NMOSFETS, The devices are annealed with hydrogen or deuterium gas at high-pressure $(1\~5\;atm.)$ to introduce higher concentration in the gate oxide. Both interface trap and oxide bulk trap are found to dominate the reliability of gate oxide during electrical stress. The degradation mechanism depends on the condition of electrical stress that could change the location of damage area in the gate oxide. It was found the trap generation in the gate oxide film is mainly related to the breakage of Si-H bonds in the interface or the bulk area. We suggest that deuterium bonds in $SiO_2$ film are effective in suppressing the generation of traps related to the energetic hot carriers.

Study of the Hole Trapping in the Gate Oxide Due to the Metal Antenna Effect (Metal Antenna 효과로 인한 게이트 산화막에서 정공 포획에 관한 연구)

  • 김병일;신봉조박근형이형규
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.549-552
    • /
    • 1998
  • Recently, the gate oxide damage induced by the plasma processes has been one of the most significant reliability issues as the gate oxide thickness falls below 10 nm. The process-induced damage was studied with the metal antenna test structures. In addition to the electron trapping, the hole trapping in a 10 nm thick gate oxide due to the plasma-induced charging was observed in the NMOS's with a metal antenna. The hole trapping gave rise to the decrease of the transconductance (gm) similarly to the case of the electron trapping, but to the extent much less than the electron trapping. It would be because the electrical stress that the plasma-induced charging forced to the gate oxide for the devices with the hole trapping was much smaller than for those with the electron trapping. This hypothesis was strongly supported by the measured characteristics of the Fowler-Nordheim current in the gate oxide.

  • PDF

Deuterium Ion Implantation for The Suppression of Defect Generation in Gate Oxide of MOSFET (MOSFET 게이트 산화막내 결함 생성 억제를 위한 효과적인 중수소 이온 주입)

  • Lee, Jae-Sung;Do, Seung-Woo;Lee, Yong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.7
    • /
    • pp.23-31
    • /
    • 2008
  • Experiment results are presented for gate oxide degradation under the constant voltage stress conditions using MOSFETs with 3-nm-thick gate oxides that are treated by deuterium gas. Two kinds of methods, annealing and implantation, are suggested for the effective deuterium incorporation. Annealing process was rather difficult to control the concentration of deuterium. Because the excess deuterium in gate oxide could be a precursor for the wear-out of gate oxide film, we found annealing process did not show improved characteristics in device reliability, compared to conventional process. However, deuterium implantation at the back-end process was effective method for the deuterated gate oxide. Device parameter variations as well as the gate leakage current depend on the deuterium concentration and are improved by low-energy deuterium implantation, compared to those of conventional process. Especially, we found that PMOSFET experienced the high voltage stress shows a giant isotope effect. This is likely because the reaction between "hot" hole and deuterium is involved in the generation of oxide trap.

Study of the Hole Trapping in the Gate Oxide due to the Metal Antenna Effect (Metal Antenna 효과로 인한 게이트 산화막에서 정공 포획에 관한 연구)

  • 김병일;이재호;신봉조;이형규;박근형
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.34-40
    • /
    • 1999
  • Recently, the gate oxide damage induced by the plasma processes has been one of the most significant reliability issues as the gate oxide thickness falls below 10 nm. The plasma-induced damage was studied with the metal antenna test structures. In addition to the electron trapping, the hole trapping in a 10 nm thick gate oxide due to the plasma-induced charging was observed in the NMOS's with a metal antenna. The hole trapping caused the transconductance (gm) to be reduced like the case of the electron trapping, but to the extent much less than the electron trapping. It would be because the electrical stress that the plasma-induced charging forced to the gate oxide for the devices with the hole trapping was much smaller than for those with the electron trapping. This hypothesis was strongly supported by the measured characteristics of the Fowler-Nordheim current in the gate oxide.

  • PDF

Hydrogen-Related Gate Oxide Degradation Investigated by High-Pressure Deuterium Annealing (고압 중수소 열처리 효과에 의해 조사된 수소 결합 관련 박막 게이트 산화막의 열화)

  • 이재성
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.11
    • /
    • pp.7-13
    • /
    • 2004
  • Experimental results are presented for the degradation of 3 nm-thick gate oxide under -2.5V $\leq$ V$_{g}$ $\leq$-4.0V stress and 10$0^{\circ}C$ conditions using P and NMOSFETs that are annealed with hydrogen or deuterium gas at high-pressure (5 atm). The degradation mechanisms are highly dependent on stress conditions. For low gate voltage, hole-trapping is found to dominate the reliability of gate oxide both in P and NMOSFETs. With increasing gate voltage to V$_{g}$ =-4.0V, the degradation becomes dominated by electron-trapping in NMOSFETs, however, the generation rate of "hot" hole was very low, because most of tunneling electrons experienced the phonon scattering before impact ionization at the Si interface. Statistical parameter variations as well as the gate leakage current depend on and are improved by high-pressure deuterium annealing, compared to corresponding hydrogen annealing. We therefore suggest that deuterium is effective in suppressing the generation of traps within the gate oxide. Our results therefore prove that hydrogen related processes are at the origin of the investigated oxide degradation.gradation.

A 100MHz DC-DC Converter Using Integrated Inductor and Capacitor as a Power Module for SoC Power Management (SoC 전원 관리를 위한 인덕터와 커패시터 내장형 100MHz DC-DC 부스트 변환기)

  • Lee, Min-Woo;Kim, Hyoung-Joong;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.31-40
    • /
    • 2009
  • This paper presents a design of a high performance DC-DC boost converter as a power module for SOC designs. It applied to this chip that reduced inductor and capacitor for integrating on a chip, and it operates with a switching frequency of 100MHz. It has reliability and stability in high switching frequency. The controller of DC-DC boost converter is designed by voltage-mode control method and compensated properly. The designed DC-DC converter is fabricated with the 0.18${\mu}m$ standard CMOS technology with a thick-gate oxide option. The overall die size is 8.14$mm^2$, and controller size is 1.15$mm^2$. The converter has the maximum efficiency over 76% for the output voltage of 4V and load current larger 300mA. The load regulation is 0.012% (0.5mV) for the load current change of 100mA.

Electrical Characteristics of Ultra-thin $SiO_2$ Films experienced Hydrogen or Deuterium High-pressure Annealing (고압의 수소 및 중수소 분위기에서 열처리된 실리콘 산화막의 전기적 특성 관찰)

  • Lee, Jae-Sung;Baek, Jong-Mu;Do, Seung-Woo;Jang, Cheol-Yeong;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.29-30
    • /
    • 2005
  • Experimental results are presented for the degradation of 3 nm-thick gate oxide ($SiO_2$) under both Negative-bias Temperature Instability(NBTI) and Hot-carrier-induced(HCI) stresses using P and NMOSFETs that are annealed with hydrogen or deuterium gas at high-pressure (1~5 atm.). Statistical parameter variations depend on the stress conditions. We suggest that deuterium bonds in $SiO_2$ film is effective in suppressing the generation of traps related to the energetic hot electrons.

  • PDF

Study of the Reliability Characteristics of the ONON(oxide-nitride-oxide-nitride) Inter-Poly Dielectrics in the Flash EEPROM cells (플래시 EEPROM 셀에서 ONON(oxide-nitride-oxide-nitride) Inter-Poly 유전체막의 신뢰성 연구)

  • Shin, Bong-Jo;Park, Keun-Hyung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.17-22
    • /
    • 1999
  • In this paper, the results of the studies about a new proposal where the ONON(oxide-nitride-oxide-nitride) layer instead of the conventional ONO(oxide-nitride-oxide) layer is used as the IPD(inter-poly-dielectrics) layer to improve the data retention problem in the Flash EEPROM cell, have been discussed. For these studies, the stacked-gate Flash EEPROM cell with an about 10nm thick gate oxide and on ONO or ONON IPD layer have been fabricated. The measurement results have shown that the data retention characteristics of the devices with the ONO IPD layer are significantly degraded with an activation energy of 0.78 eV. which is much lower than the minimum value (1.0 eV) required for the Flash EEPROM cell. This is believed to be due to the partial or whole etching of the top oxide of the IPD layer during the cleaning process performed just prior to the dry oxidation process to grow the gate oxide of the peripheral MOSFET devices. Whereas the data retention characteristics of the devices with the ONON IPD layer have been found to be much (more than 50%) improved with an activation energy of 1.10 eV. This must be because the thin nitride layer on the top oxide layer in the ONON IPD layer protected the top oxide layer from being etched during the cleaning process.

  • PDF