DOI QR코드

DOI QR Code

Degradation of Ultra-thin SiO2 film Incorporated with Hydrogen or Deuterium Bonds during Electrical Stress

수소 및 중수소가 포함된 실리콘 산화막의 전기적 스트레스에 의한 열화특성

  • 이재성 (위덕대학교 정보통신공학부) ;
  • 백종무 (대원과학대학 전자정보통신과) ;
  • 정영철 (경주대학교 컴퓨터멀티미디어공학부) ;
  • 도승우 (경북대학교 전자전기공학부) ;
  • 이용현 (경북대학교 전자전기공학부)
  • Published : 2005.11.01

Abstract

Experimental results are presented for the degradation of 3 nm-thick gate oxide $(SiO_2)$ under both Negative-bias Temperature Instability (NBTI) and Hot-carrier-induced (HCI) stresses using P and NMOSFETS, The devices are annealed with hydrogen or deuterium gas at high-pressure $(1\~5\;atm.)$ to introduce higher concentration in the gate oxide. Both interface trap and oxide bulk trap are found to dominate the reliability of gate oxide during electrical stress. The degradation mechanism depends on the condition of electrical stress that could change the location of damage area in the gate oxide. It was found the trap generation in the gate oxide film is mainly related to the breakage of Si-H bonds in the interface or the bulk area. We suggest that deuterium bonds in $SiO_2$ film are effective in suppressing the generation of traps related to the energetic hot carriers.

Keywords

References

  1. D. J. DiMaria and E. Cartier, 'Mechanism for stress-induced leakage currents in thin silicon dioxide films', J. Appl. Phys., Vol. 78, No.6, p. 3883, 1995
  2. J. Wu, E. Rosenbaum, B. MacDonald, E. Li, B. Tracy, and P. Fang, 'Anode hole injection versus hydrogen release: The mechanism for gate oxide breakdown', IEEE Int. Reliability Physics Syrnp., San Jose, CA, p. 27, 2000
  3. Y. Mitani, H. Satake, H. Itoh, and A. Toriumi, 'Suppression of stress-induced leakage current after Fowler-Nordheim stressing by deuterium pyrogenic oxidation and deuterium poly-Si deposition', IEEE Trans. Electron Devices, Vol. 49, No.7, p. 1192, 2002
  4. H. Uchida, S. Inomata, and T. Ajioka, 'Effect of interface traps and bulk traps in $SiO_2$ on hot-carrier-induced degradation', IEEE Int. Conference on Microelectronics Test Structures, p. 103, 1989
  5. T. Yamamoto, K. Uwasawa, and T. Mogami, 'Bias temperatre instability in scaled $p^+$ polysilicon gate p-MOSFETs', IEEE Trans. Electron Devices, Vol. 46, No. 5, p. 921, 1999
  6. K. O. Jeppson and C. M. Svensson, 'Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices', J. Appl. Phys., Vol. 48, No. 5, p. 2004, 1977
  7. F. Jimenez-Molinos, F. Gamiz, A. Palma, P. Cartujo, and J. A. Lopez-Villanueva, 'Direct and trap-assisted elastic tunneling through ultrathin gate oxide', J. Appl. Phys., Vol. 91, No.8, p. 5116, 2002
  8. M. H. Lee, C. H, Lin, and C. W. Liu, 'Novel methods to incorporate deuterium in the MOS structures', IEEE Electron Device Lett., Vol. 22, No. 11, p. 519, 2001
  9. K. Hess, I. C. Kizilyalli, and J. W. Lyding, 'Giant isotope effect in hot electron degradation of metal oxide silicon devices', IEEE Trans. Electron Devices, Vol. 45, No. 2, p. 406, 1998
  10. Z. Chen, K. Hess, J. Lee, J. W. Lyding, E. Rosenbaum, I. Kizilyalli, S. Chetlur, and R. Huang, 'On the mechanism for interface trap creation in MOS transistors due to channel hot carrier stressing', IEEE Electron Device Lett., Vol. 21, No.1, p. 24, 2000