• Title/Summary/Keyword: thick and thin effect

Search Result 309, Processing Time 0.027 seconds

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

A Study on the Effect of Gathering made by Gathering Conditions (개더 조건에 따른 개더 효과에 관한 연구)

  • 이명희;정희경
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.776-783
    • /
    • 2004
  • The purpose of this study was to identify the reasonable gathering conditions as consider of effect of gathering and variation of silhouette made by gathering conditions. The experimental design consists of four factorial design: (1) three kinds of different weight and different thickness fabrics (2) three kinds of different stitch densities (3) five kinds of different ratio of gathers (4) three kinds of different angles. Therefore one hundred thirty five (135) samples were made. Data analysis utilize SPSS WIN 10.0 Package. The results of this study were as follows: 1. In the aspect of fabrics, it is shown the visual propriety that it is as thin as the small stitch, and as thick as the big stitch. 2. As stitch densities, it shows the different stabilized nodes. 3. In the aspect of ratio of gathers, it is shown the visual propriety that a few was small stitches, which help formations of nodes, and a lot were big stitches, which help increased the effect of gather. 4. In the aspect of angle of bias, the drape appearance was excellent as a sample of cutting by 0 angle(0$^{\circ}$) of bias. The big stitches that help formations of stabilized nodes, and a case of cutting by 45 angle(45$^{\circ}$) of bias was small stitch.

Two-step Electroless Plated Pt Ohmic Contacts to p-type InGaAs

  • Im, Hung-Su;Wang, Kai;Kim, Geun-Woo;Chang, Ji-Ho;Koo, Bon-Heun
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.47-50
    • /
    • 2010
  • This work discusses a two-step electroless plating method for preparing a Pt thin film on p-type InGaAs substrate, which is defined as Pt I and Pt II. A thin Pt catalytic layer formed in Pt I bath on the substrate at $65^{\circ}C$. In the following Pt II bath, thick Pt films then easily grew on the sensitized layer on InGaAs previously formed in the Pt I bath. The growth of Pt film is strongly influenced by the plating temperature and pH value. To study the plating time effect, the plating of Pt II bath is 5 to 40 min at $80^{\circ}C$ after using Pt I bath at 50~$65^{\circ}C$ for 5min of pH 8~13. Pt film for ohmic contact to p-type InGaAs was successfully prepared by using the two-step Pt electroless plating.

Flexibility Study of Silicon Thin Film Transferred on Flexible Substrate (폴리머 기판 위에 전사된 실리콘 박막의 기계적 유연성 연구)

  • Lee, Mi-Kyoung;Lee, Eun-Kyung;Yang, Min;Chon, Min-Woo;Lee, Hyouk;Lim, Jae Sung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • Development of flexible electronic devices has primarily focused on printing technology using organic materials. However, organic-based flexible electronics have several disadvantages, including low electrical performance and long-term reliability. Therefore, we fabricated nano- and micro-thick silicon film attached to the polymer substrate using transfer printing technology to investigate the feasibility of silicon-based flexible electronic devices with high performance and high flexibility. Flexibility of the fabricated samples was investigated using bending and stretching tests. The failure bending radius of the 200 nm-thick silicon film attached on a PI substrate was 4.5 mm, and the failure stretching strain was 1.8%. The failure bending radius of the micro-thick silicon film attached on a FPCB was 2 mm, and the failure strain was 3.5%, which showed superior flexibility compared with conventional silicon material. Improved flexibility was attributed to a buffering effect of the adhesive between the silicon film and the substrate. The superior flexibility of the thin silicon film demonstrates the possibility for flexible electronic devices with high performance.

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

Effect of Processing Conditions of ITY on the Physical Properties of Compound Yarn for New Synthetic Fabrics(I) (ITY 제조공정조건이 신합섬용 복합사의 물성에 미치는 영향(I))

  • 이상정;김승진;한원희;노태철
    • Textile Coloration and Finishing
    • /
    • v.12 no.5
    • /
    • pp.273-279
    • /
    • 2000
  • Interlace textured yarn was developed in order to increase weaving process efficiency. Today, interlace texturing is very useful method of manufacturing the high added value compound yarns for new synthetic fabrics. In this research, new silky type high added value compound yarns were. manufactured by interlace texturing technology and tested their properties. The object of this research is to investigate the relationship between interlace textured yarn properties and processing parameters that is air pressure, yarn tension and take-up speed. The original filament yarns used were TTD(Thick & Thin Semi-Dull) 110d/72f and SCD(Semi-Dull Cation Dyeable) 75d/36f. 27 specimens were manufactured and tested for their physical properties-nip density, tensile properties, multi-step shrinkage test and surface structure by SEM. The air pressure was main process condition to change properties of interlace textured yarns. And interlace textured process had influence on weaving preparation process, weaving, knitting and so on. It has some influence on shrinkage properties of dyeing and finishing processes.

  • PDF

Effect of Methylprednisolone on the Healing Process after $Medpor^{(R)}$ Implantation in Rats (Medpor 매식후 치유과정에서 Methylprednisolone이 미치는 영향)

  • Kim, Su-Gwan;Chung, Sung-Su
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.142-154
    • /
    • 2000
  • The purpose of this study is to evaluate the difference in healing of $Medpor^{(R)}$ implants of two different thickness (1.5mm and 4.5mm) and the effects of methylprednisolone on the healing process. Light microscopic and scanning electron microscopic examinations, and hardness measurement were made in 100 rats 2, 4, or 8 weeks postoperatively. The 1.5mm thin implants were taken better than the 4.5mm thick implants. The inflammatory responses were reduced after application of methylprednisolone with arrangement and amount of bone matrix deposited being more irregular and reduced in bulk than in the control group. To hasten postoperative healing after $Medpor^{(R)}$ implantation, the thinner material should be used and steroid injection should be avoided.

  • PDF

A Study on Reliability of Solder Joint in Different Electronic Materials (이종 전자재료 JO1NT 부위의 신뢰성에 관한 연구)

  • 신영의;김경섭;김형호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.49-54
    • /
    • 1993
  • This paper discusses the reliability of solder joints of electronic devices on printed circuit board. Solder application is usually done by screen printing method for the bonding between outer leads of devices and thick film(Ag/Pd) pattern on Hybrid IC as wel1 as Cu lands on PCB. As result of thermal stresses generated at the solder joints due to the differences of thermal expansion coefficients between packge body and PCB, Micro cracking often occurs due to thermal fatigue failure at solder joints. The initiation and the propagate of solder joint crack depends on the environmental conditions, such as storage temperature and thermal cycling. The principal mechanisms of the cracking pheno- mana are the formation of kirkendal void caused by the differences in diffusion rate of materials, ant the thermal fatigue effect due to the differences of thermal expansion coefficient between package body and PCB. Finally, This paper experimentally shows a way to supress solder joints cracks by using low-${\alpha}$ PCB and the packages with thin lead frame, and investigates the phenomena of diffusion near the bonding interfaces.

  • PDF

Effect of initial coating crack on the mechanical performance of surface-coated zircaloy cladding

  • Xu, Ze;Liu, Yulan;Wang, Biao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1250-1258
    • /
    • 2021
  • In this paper, the mechanical performance of cracked surface-coated Zircaloy cladding, which has different coating materials, coating thicknesses and initial crack lengths, has been investigated. By analyzing the stress field near the crack tip, the safety zone range of initial crack length has been decided. In order to determine whether the crack can propagate along the radial (r) or axial (z) directions, the energy release rate has been calculated. By comparing the energy release rate with fracture toughness of materials, we can divide the initial crack lengths into three zones: safety zone, discussion zone and danger zone. The results show that Cr is suitable coating material for the cladding with a thin coating while Fe-Cr-Al have a better fracture mechanical performance in the cladding with thick coating. The Si-coated and SiC-coated claddings are suitable for reactors with low power fuel elements. Conclusions in this paper can provide reference and guidance for the cladding design of nuclear fuel elements.

Display Panel for AMOLED with 64 x 64 Pixels on 2' Plastic Substrate

  • Song, Chung-Kun;Ryu, Gi-Seong;Choe, Ki-Beom
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.356-358
    • /
    • 2004
  • In this paper we fabricated and succeeded to demonstrate a test panel for AMOLED on 2" glass and PET substrate. The test panel consisted of an array of 64 x 64 pixels in which OLEDs was driven by pentacene TFT. OTFTs were made of the inverted staggered structure and employed polyvinylphenol as the gate insulator and pentacene thin film as the active layer, producing the filed effect mobility of 0.3$cm^2$/V.sec and on/off current ratio of $10^5$. OLEDs were composed of TPD for HTL and Alq3 for EML with 35nm thick each, generating green monochrome light.

  • PDF