• Title/Summary/Keyword: thermal stress distributions

Search Result 188, Processing Time 0.023 seconds

A Study on Residual Stress of SiC Whisker Reiforced AI Alloy/$ZrO_2$ Joints (SiC 휘스커강화 금속복합재료와 지르코니아 접합체의 잔류응력 해석에 관한 연구)

  • 주재황;박명균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.18-26
    • /
    • 1996
  • A two dimensional thermo elasto-plastic finite element stress analysis was performed to study residual stress distributions in AI composites reinforced by SiC whisker and $ZrO_2$ ceramic joints. The influences on the residual stress distributions due to the difference of the reinforcement volume fraction and interlayer material property were investigated. Specifically, stress distributions between AI interlayer material property were investigated. Specifically, stress distributions between AI interlayer and $ZrO_2$ ceramic and between the AI interlayer and AI composite were computationally analzed.

  • PDF

Coupled Thermal-Mechanical Analysis of Rubber Oil Seals (열응력을 고려한 고무 오일시일 해석)

  • 김청균;전인기
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.39-42
    • /
    • 1994
  • This paper deals with the distributions of the contact stress in oil seals. The distributions of the contact stress due to the temperature effects are analyzed for various values of the interference for a nitrile rubber seal. The calculated FEM results show that the relative maximum stresses occur at the contacting area against the shaft, the flex zone, and the contacting area of the garter spring grooves. Using the coupled temperature-stress FEM a nalysis, the contact force of a radial lip seal with and without the garter spring are studied as a function of shaft diameter. The calculated results of mechanical analysis show good correspondence with those of the coupled thermal-mechanical analysis method except small values of the interference. And the calculated results indicated that the thermal stresses only have a very minor influence on the deformed shape of the lip seal as the interference increases. But the coupled temperature-stress analysis will be very useful tool to predict the contact behaviors of rubber lip seals for small values of the interference.

The Effect of Tandem Cooling on Welding Thermal Stress (Tandem Cooling이 용접열응력(熔接熱應力)에 미치는 영향(影響))

  • J.E.,Park;B.Y.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.14 no.4
    • /
    • pp.15-22
    • /
    • 1977
  • In this paper, two dimensional theoretical solutions of temperature distribution and thermal stress due to tandem cooling in an infinite plate were studied. Temperature distribution and thermal stress were calculated by numerical integration. Calculated temperature distributions were in good agreement with the result of the experiments by Park, and calculated thermal stresses were in good agreement with physical phenomena. This solutions could be applied to the practical tandem cooling operations.

  • PDF

Study on the Volume Fraction Optimization of Functionally Graded Heat-Resisting Composites (기능경사 내열 복합재의 체적분율 최적화에 관한 연구)

  • Jo, Jin-Rae;Ha, Dae-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.988-995
    • /
    • 2001
  • Functionally graded materials(FGMs) are highlighted to be suitable for high temperature engineering due to their continuous distribution of material properties. In this paper, an optimal design is executed for determining the optimal material volume distribution pattern that minimizes the steady-state thermal stress of FGM heat-resisting composites. The interior penalty function method and the golden section method are employed as optimization techniques while the finite element method is used for thermal stress analysis. Through numerical simulations we suggest the volume fraction distributions that considerably improve initial thermal stress distributions.

Thermal Stresses near the Edge in a Clad (클래딩 자유단의 열응력 해석)

  • 김형남;최성남;장기상
    • Proceedings of the KWS Conference
    • /
    • 1999.10a
    • /
    • pp.306-309
    • /
    • 1999
  • Based on the principle of complementary energy, an analytical method is developed which focused on the end effects for determining thermal stress distributions in the claded beam. This method gives the stress distributions which completely satisfy the stress-free boundary condition at the edge. Numerical result shows that shear stress and peeling stress at the interface between the substrate and clad are significant near the edge and become negligible in the interior region. Even though the relative location where the maximum or minimum stresses take place moves to interior as the length of the beam become smaller, the absolute location from the free end and the value of these stresses are the same in spite of the variation of the length of beam.

  • PDF

Analysis on the Elasto-Plastic Thermal Stress and Deformation of Metal Casting Mould by FEM (Finite Element Method) (FEM을 이용한 주조금형(鑄造金型)의 탄소성(彈塑性) 열응력(熱應力) 및 열변형(熱變形) 해석(解析))

  • Kim, Ok-Sam;Koo, Bon-Kwon;Min, Soo-Hong
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.81-93
    • /
    • 1993
  • It is well-known that the analysis of elasto-plastic thermal stress and deformation are substantially important in optimal design of metal casting mould. The unsteady state thermal stress and deformation generated during the solidification process of ingot and mould have been analyzed by two dimensional thermal elasto-plastic theories. Distributions of temperature, stress and relative displacement of the mould are calculated by the finite element method and compared with experimental results. In the elasto-plastic thermal stress analysis, compressive stress occurred at the inside wall of the mould whereas tensile stress occurred at outside wall. A coincidence between the analytical and experimental results is found to be fairly good, showing that the proposed analytical method is reliable.

  • PDF

Stability/instability of the graphene reinforced nano-sized shell employing modified couple stress model

  • Yao, Zhigang;Xie, Hui;Wang, Yulei
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.31-46
    • /
    • 2021
  • The current research deals with, stability/instability and cylindrical composite nano-scaled shell's resonance frequency filled by graphene nanoplatelets (GPLs) under various thermal conditions (linear and nonlinear thermal loadings). The piece-wise GPL-reinforced composites' material properties change through the orientation of cylindrical nano-sized shell's thickness as the temperature changes. Moreover, in order to model all layers' efficient material properties, nanomechanical model of Halpin-Tsai has been applied. A functionally modified couple stress model (FMCS) has been employed to simulate GPLRC nano-sized shell's size dependency. It is firstly investigated that reaching the relative frequency's percentage to 30% would lead to thermal buckling. The current study's originality is in considering the multifarious influences of GPLRC and thermal loading along with FMCS on GPLRC nano-scaled shell's resonance frequencies, relative frequency, dynamic deflection, and thermal buckling. Furthermore, Hamilton's principle is applied to achieve boundary conditions (BCs) and governing motion equations, while the mentioned equations are solved using an analytical approach. The outcomes reveal that a range of distributions in temperature and other mechanical and configurational characteristics have an essential contribution in GPLRC cylindrical nano-scaled shell's relative frequency change, resonance frequency, stability/instability, and dynamic deflection. The current study's outcomes are practical assumptions for materials science designing, nano-mechanical, and micromechanical systems such as micro-sized sensors and actuators.

Analysis of Heat of Hydration for Hyungsan Bridge (형산큰다리 교각기초 콘크리트의 수화열 해석 및 적용)

  • 안동근;김명모
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.715-722
    • /
    • 2001
  • The main purpose of this study is to evaluate early age thermal stresses and to estimate the risk of thermal cracking in the footings of Hyungsan bridge. In this study, stress analyses are performed for several construction stages using the computation of temperature distributions. The stress analysis results show that, not using the embedded pipe cooling, placing the concrete at once for each footings may cause sever thermal cracking. So, the structures should be constructed with one horizontal construction joint. Then the height of each lifts were determined to be 1.50 meters. Using various time intervals between lifts, temperature and stress.

  • PDF

Temperature Distributions and Thermal Distortions of the Al-MMC Brake Drum (Al기 복합재료 브레이크 드럼의 열응력 해석)

  • 윤영식;남종승;유승을;한범석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.433-436
    • /
    • 2000
  • For a new design of a automotive brake system, it appears to be very important to examine the temperature and thermal stresses distribution in the brake drum. In the direct measurement of them, however, a number of difficulties are involved. In this study, simulation on temperature and thermal stress distributions in an A1-MMC brake drum of a commercial vehicle during 15 braking operations was carried out using the finite element analysis(FEA1. The effect of a circumferential fin near open end of the brake drum on the temperature rise and stresses was also examined.

  • PDF

Thermal Analysis of a Film Cooling System with Normal Injection Holes Using Experimental Data

  • Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee;Kim, Moon-Young
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • The present study investigated temperature and thermal stress distributions in a film cooling system with normal injection cooling flow. 3D-numerical simulations using the FEM commercial code ANSYS were conducted to calculate distributions of temperature and thermal stresses. In the simulations, the surface boundary conditions used the surface heat transfer coefficients and adiabatic wall temperature which were converted from the Sherwood numbers and impermeable wall effectiveness obtained from previous mass transfer experiments. As a result, the temperature gradients, in contrast to the adiabatic wall temperature, were generated by conduction between the hot and cold regions in the film cooling system. The gradient magnitudes were about 10~20K in the y-axis (spanwise) direction and about 50~60K in the x-axis (streamwise) direction. The high thermal stresses resulting from this temperature distribution appeared in the side regions of holes. These locations were similar to those of thermal cracks in actual gas turbines. Thus, this thermal analysis can apply to a thermal design of film cooling holes to prevent or reduce thermal stresses.