In-phantom neutron flux distribution is measured at the HANARO BNCT irradiation facility. The measurements are performed with Au foil and wires. The thermal neutron flux and Cd ratio obtained at the HANARO BNCT facility are $1.19{\times}10^9\;n/cm^{2}s$ and 152, respectively, at 24 MW reactor power. The measured in-phantom neutron flux has a maximum value at a depth of 3 mm in the phantom and then decreases rapidly. The maximum flux is about $25\%$ larger than that of the phantom surface, and the measured value at a depth of 22 mm in the phantom is about a half of the maximum value. In addition, the neutron beam is limited well within the aperture of the neutron collimator. The two-dimensional in-phantom neutron flux distribution is determined. Significant neutron irradiation is observed within 20 mm from the phantom surface. The measured neutron flux distribution can be utilized in irradiation planning for a patient.
CANDU 6 중수형 원자로 운전중에 Calandria Shell내에서 발생하는 $(n,\;{\gamma})$ 반응유발 열중성자속분포와 CANDU 6 발전소의 측면 및 하단 차폐구조에서의 방사선 선량률을 계산하기 위하여 몬테칼로 방법을 이용한 MCNP 4.2 코드를 사용하였다. 계산결과, Mainshell, Annular Plate와 Subshell내 의 열중성자속분포는 $10^{11}{\sim}10^{13}\;neutrons/cm^2-sec$로 나타났고, 이는 DOT 4.2 코드의 계산결과와 비교해 볼 때 약간 큰 값들의 분포를 보여주고 있다. 이 계산결과의 응용으로서 작업자 접근가능지역 (Worker Accessible Areas)에서의 감마선량률을 계산해본 결과 설계목표치인 $6{\mu}Sv/h$보다 낮은 값을 주는 것으로 나타났다. $(n,\;{\gamma})$ 반응유발 열중성자속분포에 대한 MCNP 4.2 코드의 계산결과는 CANDU 6형 원자로의 방사선 차폐해석에 중요한 자료로 널리 이용될 수 있을 것이다.
The Korea Atomic Energy Research Institute (KAERI) has designed a Hybrid-Low Power Research Reactor (H-LPRR) which can be used for critical assembly and conventional research reactor as well. It is an open tank-in-pool type research reactor (Thermal Power: 50 kWth) of which the most important applications are Neutron Activation Analysis (NAA), Radioisotope (RI) production, education and training. There are eight irradiation holes on the edge of the reactor core: IR (6 holes for RI production) and NA (2 holes for NAA) holes. In order to quantify the elemental concentration in target samples through the Instrumental Neutron Activation Analysis (INAA), it is necessary to measure neutron spectrum parameters such as thermal neutron flux, the deviation from the ideal 1/E epithermal neutron flux distribution (α), and the thermal-to-epithermal neutron flux ratio (f) for the irradiation holes. In this study, the MCNP6.1 code and FORTRAN 90 language are applied to determine the parameters for the two irradiation holes (NA-SW and NA-NW) in H-LPRR, and in particular its α and f parameters are compared to values of other research reactors. The results confirmed that the neutron irradiation holes in H-LPRR are designed to be sufficiently applied to neutron activation analysis, and its performance is comparable to that of foreign research reactors including the TRIGA MARK II.
The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide ($UO_2$) and uranium zirconium hydride ($UZrH_{1.6}$) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with $UO_2$ contains $8{\times}8$ fuel rods while that fueled with $UZrH_{1.6}$ contains $9{\times}9$ fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. $UZrH_{1.6}$ fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.
Research reactors for radioisotope production, fuel and material testing and research activities are designed, constructed and operated based on the society's needs. In this study, neutronic and thermal hydraulic design of a high neutron flux research reactor core for radioisotope production is presented. Main parameters including core excess reactivity, reactivity variations, power and flux distribution during the cycle, axial and radial power peaking factors (PPF), Pu239 production and minimum DNBR are calculated by nuclear deterministic codes. Core calculations performed by deterministic codes are validated with Monte Carlo code. Comparison of the neutronic parameters obtained from deterministic and Monte Carlo codes indicates good agreement. Finally, subchannel analysis performed for the hot channel to evaluate the maximum fuel and clad temperatures. The results show that the average thermal neutron flux at the beginning of cycle (BOC) is 1.0811 × 1014 n/㎠-s and at the end of cycle (EOC) is 1.229 × 1014 n/㎠-s. Total Plutonium (Pu239) production at the EOC evaluated to be 0.9487 Kg with 83.64% grade when LEU (UO2 with 3.7% enrichment) used as fuel. This designed reactor which uses LEU fuel and has high neutron flux and low plutonium production could be used for peaceful nuclear activities based on nuclear non-proliferation treaty concepts.
SMART 연구로의 노외계측기 설계를 위하여 고온 전출력 조건과 중성자 계수율이 최소가 되는 조건에 대해서 중성자속 분포 평가를 수행하였다. 고온 전출력 조건에서 IST 영역의 에너지 구간별 중성자속 분포 계산은 DORT와 MCNP코드를 이용하였으며, 계산 결과 IST 내의 첫 번째 물 영역에서 최대의 열중성자속을 보였고 두 코드 결과는 대략 10% 이내에서 일치하는 것으로 나타났다. 그리고 중성자 계수율이 최소가 되는 조건에서 노외계측기 설치 영역에서의 중성자속을 계산한 결과, 선원의 세기가 $1.0{\times}10^8(n/sec)$이라고 가정한 경우 최대 열중성자속의 크기는 $6.99{\times}10^{-2}(n/cm^2-sec)$로 전체 중성자속의 80% 이상을 차지하는 것으로 나타났는데 이는 IST 철 구조물을 통과한 속중성자가 감속능이 큰 물 영역에서 에너지를 잃고 열중성자로 변하였기 때문이다. 그러므로 노외계측기 설계시 계측기를 둘러싸는 계측기 안내관 충전물질, 설치위치 그리고 각 계측기 Segment들의 길이 등을 최적화하여 중성자 계수율을 증가시키는 방안을 모색할 필요가 있겠으며, 이러한 중성자속 평가 결과는 노외계측기가 IST 영역에 설치될 경우 노외계측기 선속 요건으로 이용될 수 있다.
$^{232}$ Th 핵분열 물질과 조합된 고체비적검출체를 사용하여 250kw로 정상운전되는 TRIGA Mark-II 원자로의 대차폐수조내에서 열중성자주(thermalizing column)의 중심으로부터 수평방향의 속 중성자 선속밀도 분포를 추정하였다. 속 중성자 스펙트럼이 $^{235}$ U가 열 중성자에 의하여 핵분열이 일어날매 방출되는 중성자 스펙트럼과 같다는 가정을 한 다음, 선속밀도는 고쳬비적검출체로 얻어진 실험 결과로부터 계산되었다. 이와 같은 방법으로 속 중성자 설속밀도 분포의 측정 결과는 도표로서 제시된다.
Taeyun Kim;Bo-Young Han;Seongwoo Yang;Jaegi Lee ;Gwang-Min Sun;Byung-Gun Park;Sung-Joon Ye
Nuclear Engineering and Technology
/
제55권11호
/
pp.3996-4001
/
2023
The High-flux Advanced Neutron Application Reactor (HANARO) produces radioisotopes (RIs) (131I, 192Ir, etc.) through neutron irradiation on various RI production targets. Among them, 177Lu and 166Ho are particularly promising owing to their theranostic characteristics that facilitate simultaneous diagnosis and treatment. Prior to neutron irradiation, evaluating the nuclear heating of the RI production target is essential for ensuring the thermal-hydraulic safety of HANARO. In this study, the feasibility of producing 177Lu and 166Ho using irradiation holes of HANARO was investigated in terms of thermal-hydraulic safety. The nuclear heating rates of the RI production target by prompt and delayed radiation were calculated using MCNP6. The calculated nuclear heating rates were used as an input parameter in COMSOL Multiphysics to obtain the temperature distribution in an irradiation hole. The degree of temperature increase of the 177Lu and 166Ho production targets satisfied the safety criteria of HANARO. The nuclear heating rates and temperature distribution obtained through the in silico study are expected to provide valuable insight into the production of 177Lu and 166Ho using HANARO.
Galahom, A. Abdelghafar;Mohsen, Mohamed Y.M.;Amrani, Naima
Nuclear Engineering and Technology
/
제54권1호
/
pp.1-10
/
2022
This study discusses the effect of using 232Th instead of 238U on the neutronic characteristics and the main operating parameters of the pressurized water reactor (PWR). MCNPX version 2.7 was used to compare the neutronic characteristics of UO2 with (Th, 235U)O2 and (Th, 233U) O2. Firstly, the infinity multiplication factor (Kinf), thermal neutron flux, and power distribution have been studied for the investigated fuel types. Secondly, the effect of Gd2O3 and Er2O3 on the Kinf and on the radial thermal neutron flux and thermal power has been investigated to distinguish which of them is more suitable than the other in reactivity management. Thirdly, to illustrate the effectiveness of 232Th in decreasing the inventory of both the actinides and non-actinides, the concentration of plutonium (Pu) isotopes and minor actinides (MAs) has been simulated with the fuel burnup. Besides, due to their large thermal neutron absorption cross-section, the concentrations of 135Xe, 149Sm, and 151Sm with the fuel burnup have been investigated. Finally, the main safety parameters such as the reactivity worth of the control rods (ρCR), the effective delayed neutron fraction βeff, and the Doppler reactivity coefficient (DRC) were calculated to determine to which extent these fuel types achieve the acceptable limits.
The aim of this study was to optimize the target, moderator, and collimator (TMC) in a neutron beam generator for the accelerator-based BNCT (A-BNCT) system. The optimization employed the Monte Carlo Neutron and Photon (MCNP) simulation. The optimal geometry for the target was decided as the one with the highest neutron flux among nominates, which were called as angled, rib, and tube in this study. The moderator was optimized in terms of consisting material to produce appropriate neutron energy distribution for the treatment. The optimization of the collimator, which wrapped around the target, was carried out by deciding the material to effectively prevent the leakage radiations. As results, characteristic of the neutron beam from the optimized TMC was compared to the recommendation by the International Atomic Energy Agent (IAEA). The tube type target showed the highest neutron flux among nominates. The optimal material for the moderator and collimator were combination of Fluental (Al203+AlF3) with 60Ni filter and lead, respectively. The optimized TMC satisfied the IAEA recommendations such as the minimum production rate of epithermal neutrons from thermal neutrons: that was 2.5 times higher. The results can be used as source terms for shielding designs of treatment rooms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.