DOI QR코드

DOI QR Code

Thermal-hydraulic safety analysis of radioisotope production in HANARO using MCNP6 and COMSOL multiphysics: A feasibility study

  • Taeyun Kim (Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Bo-Young Han (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Seongwoo Yang (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Jaegi Lee (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Gwang-Min Sun (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Byung-Gun Park (HANARO Utilization Division, Korea Atomic Energy Research Institute) ;
  • Sung-Joon Ye (Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University)
  • Received : 2023.02.27
  • Accepted : 2023.07.11
  • Published : 2023.11.25

Abstract

The High-flux Advanced Neutron Application Reactor (HANARO) produces radioisotopes (RIs) (131I, 192Ir, etc.) through neutron irradiation on various RI production targets. Among them, 177Lu and 166Ho are particularly promising owing to their theranostic characteristics that facilitate simultaneous diagnosis and treatment. Prior to neutron irradiation, evaluating the nuclear heating of the RI production target is essential for ensuring the thermal-hydraulic safety of HANARO. In this study, the feasibility of producing 177Lu and 166Ho using irradiation holes of HANARO was investigated in terms of thermal-hydraulic safety. The nuclear heating rates of the RI production target by prompt and delayed radiation were calculated using MCNP6. The calculated nuclear heating rates were used as an input parameter in COMSOL Multiphysics to obtain the temperature distribution in an irradiation hole. The degree of temperature increase of the 177Lu and 166Ho production targets satisfied the safety criteria of HANARO. The nuclear heating rates and temperature distribution obtained through the in silico study are expected to provide valuable insight into the production of 177Lu and 166Ho using HANARO.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021M2E7A2079439) and the Korea government (MSIT) (1711078081). This study was presented at the International Conference on Nuclear Analytical Techniques in 2022 (NAT2022), which was held in Daejeon, Korea, from Dec. 7 to 9, 2022.

References

  1. E. Rosenblatt, E. Zubizarreta (Eds.), Radiotherapy in Cancer Care: Facing the Global Challenge, International Atomic Energy Agency, Vienna, 2017. 
  2. A. Dash, F.F. Knapp, M.R.A. Pillai, Targeted radionuclide therapy-an overview, Curr. Rad. 6 (2013) 152-180. 
  3. C. Muller, N.P. van der Meulen, M. Benesov a, R. Schibli, Therapeutic radiometals beyond 177Lu and 90Y: production and application of promising α-particle, β- -particle, and auger electron emitters, J. Nucl. Med. 58 (2017) 91S-96S. 
  4. M. Verpelli, L. Vrapcenjak, LiveChart of nuclides, International Atomic Energy Agency, Nuclear Data Section, 2020. https://www-nds.iaea.org/livechart/. (Accessed 25 January 2023). 
  5. K.N. Choo, M.S. Cho, S.W. Yang, S.J. Park, Contribution of HANARO irradiation technologies to national nuclear R&D, Nucl. Eng. Technol. 46 (2014) 501-512. 
  6. S.K. Lee, S. Lee, M. Kang, K. Woo, S.W. Yang, J. Lee, Development of fission 99Mo production process using HANARO, Nucl. Eng. Technol. 52 (2020) 1517-1523.  https://doi.org/10.1016/j.net.2019.12.019
  7. G.M. Sun, J. Lee, Y.R. Uhm, H. Baek, An investigation of excretion of calcium from female mice ingested with boron by using neutron activation analysis, Nucl. Eng. Technol. 52 (2020) 2581-2584.  https://doi.org/10.1016/j.net.2020.04.010
  8. J. Park, B.G. Park, G.M. Sun, Thermal-annealing behavior of in-core neutron-irradiated epitaxial 4H-SiC, Nucl. Eng. Technol. 55 (2023) 209-214. 
  9. H. Kim, H.R. Kim, K.H. Lee, J.B. Lee, Design characteristics and startup tests of HANARO, J. Nucl. Sci. Technol. 33 (1996) 527-538.  https://doi.org/10.1080/18811248.1996.9731952
  10. B.C. Lee, Analysis on the Detailed Heat Generation Rate for the HANARO, Korea Atomic Energy Research Institute, 2008. KAERI/TR-3643/2008. 
  11. T. Goorley, M. James, T. Booth, F. Brown, J. Bull, L.J. Cox, J. Durkee, J. Elson, M. Fensin, R.A. Forster, J. Hendricks, H.G. Hughes, R. Johns, B. Kiedrowski, R. Martz, S. Mashnik, G. McKinney, D. Pelowitz, R. Prael, J. Sweezy, L. Waters, T. Wilcox, T. Zukaitis, Initial MCNP6 release overview, Nucl. Technol. 180 (2012) 298-315.  https://doi.org/10.13182/NT11-135
  12. E.J.F. Dickinson, H. Ekstrom, E. Fontes, COMSOL Multiphysics®: finite element software for electrochemical analysis. A mini-review, Electrochem. Commun. 40 (2014) 71-74. 
  13. B.G. Park, G.D. Kang, M.S. Kim, T. Noh, Evaluation of Nuclear Heating Rate by Delayed Gamma Rays from Fission Products of HANARO, Korea Atomic Energy Research Institute, 2018. KAERI/TR-7239/2018. 
  14. T. Noh, B.G. Park, M.S. Kim, Estimation of nuclear heating by delayed gamma rays from radioactive structural materials of HANARO, Nucl. Eng. Technol. 50 (2018) 446-452.  https://doi.org/10.1016/j.net.2018.01.010
  15. J.L. Conlin, W. Haeck, D. Neudecker, D.K. Parsons, M.C. White, Release of ENDF/B-VIII. 0-based ACE Data Files, Los Alamos National Laboratory, 2018. LA-UR-18-24034. 
  16. MatWeb LLC, Material Property Data, 2016. http://www.matweb.com/. (Accessed 25 January 2023). 
  17. A.G. Croff, User's Manual for the ORIGEN2 Computer Code, Oak Ridge National Laboratory, 1980. ORNL/TM-7175.