• 제목/요약/키워드: theory of mathematical education

검색결과 519건 처리시간 0.025초

DIRICHLET BOUNDARY VALUE PROBLEM FOR A CLASS OF THE ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제27권4호
    • /
    • pp.707-720
    • /
    • 2014
  • We get a theorem which shows the existence of at least three solutions for some elliptic system with Dirichlet boundary condition. We obtain this result by using the finite dimensional reduction method which reduces the infinite dimensional problem to the finite dimensional one. We also use the critical point theory on the reduced finite dimensioal subspace.

EXISTENCE OF MULTIPLE SOLUTIONS OF A SEMILINEAR BIHARMONIC PROBLEM WITH VARIABLE COEFFICIENTS

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제24권1호
    • /
    • pp.121-130
    • /
    • 2011
  • We obtain multiplicity results for the biharmonic problem with a variable coefficient semilinear term. We show that there exist at least three solutions for the biharmonic problem with the variable coefficient semilinear term under some conditions. We obtain this multiplicity result by applying the Leray-Schauder degree theory.

영재교육을 위한 수학적 모델링 프로그램의 개발 및 적용 :보로노이 다이어그램과 들로네 삼각분할을 중심으로 (Development and application of program for mathematically gifted students based on mathematical modeling : focused on Voronoi diagram and Delaunay triangulation)

  • 유홍규;윤종국
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제31권3호
    • /
    • pp.257-277
    • /
    • 2017
  • 본 연구의 주된 목적은 크게 두 가지로 나눌 수 있다. 첫째, 최근 수학적 모델링이 강조되는 상황에서 보로노이 다이어그램과 들로네 삼각분할을 주제로 영재교육을 위한 수학적 모델링 프로그램을 개발하는 것이다. 둘째, 본 연구에서 개발한 수학적 모델링 프로그램을 실제 영재교육 수업에 적용한 결과를 분석하여 수학적 모델링 수업을 설계하는 현직교사와 융합형 영재프로그램을 개발하는 영재교사에게 도움을 주고자 한다.

BOUNDARY VALUE PROBLEM FOR ONE-DIMENSIONAL ELLIPTIC JUMPING PROBLEM WITH CROSSING n-EIGENVALUES

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • East Asian mathematical journal
    • /
    • 제35권1호
    • /
    • pp.41-50
    • /
    • 2019
  • This paper is dealt with one-dimensional elliptic jumping problem with nonlinearities crossing n eigenvalues. We get one theorem which shows multiplicity results for solutions of one-dimensional elliptic boundary value problem with jumping nonlinearities. This theorem is that there exist at least two solutions when nonlinearities crossing odd eigenvalues, at least three solutions when nonlinearities crossing even eigenvalues, exactly one solutions and no solution depending on the source term. We obtain these results by the eigenvalues and the corresponding normalized eigenfunctions of the elliptic eigenvalue problem and Leray-Schauder degree theory.

수학과 건축의 패러다임과 범 패러다임 (Paradigm and Pan-paradigm in Mathematics and Architecture)

  • 계영희
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제27권2호
    • /
    • pp.165-177
    • /
    • 2013
  • 토마스 쿤의 패러다임 이론은 수학의 혁명적 과정을 설명하는 데는 충분치 않으며, 학제간 연구에는 더욱 그러하다. 본 논문에서는 현대건축에 나타난 위상기하적인 요소를 고찰하고, 우리나라 전통건축과 서양의 현대건축과의 강한 유사성을 비교할 때 시대정신으로는 설명이 불충분하여 범 패러다임이란 개념으로 설명한다.

수학적 지식의 특성요소에 대한 수학교육전공 대학생의 인식 상황 (On Mathematics Education Major Students' Conception of Characteristics of Mathematical Knowledge)

  • 김영국
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제51권2호
    • /
    • pp.161-171
    • /
    • 2012
  • Generally mathematics is regarded as a subtle subject to grasp their true meaning. And teacher's personal conceptions of mathematics influence greatly on the teaching and learning of mathematics. More over often teachers confess their difficulties in explaining the true nature of mathematics. In this paper, applying the theory of epistemology, we tried to search factors that must be counted important when trying to understand the true nature of mathematics. As results, we identified five characteristics of mathematical knowledge such as logical reasoning, abstractive concept, mathematical representation, systematical structure, and axiomatic validation. Next, we tried to investigate math education major students' conception of mathematics using these items. To proceed this research we asked 51 students from three Universities to answer their opinion on 'What do you think is mathematics?'. Analysing their answers in the light of the above five items, we got the following facts. 1. Only 38% of the students regarded mathematics as one of the five items, which can be considered to reveal students' low concern about the basic nature of mathematics. 2. The status of students' responses to the question were greatly different among the three Universities. This shows that mathematics professors need to lead students to have concern about the true nature of mathematics.

MATHEMATICAL CONSTANTS ASSOCIATED WITH THE MULTIPLE GAMMA FUNCTIONS

  • Jung, Myung-Ho;Cho, Young-Joon;Choi, June-Sang
    • East Asian mathematical journal
    • /
    • 제21권1호
    • /
    • pp.77-103
    • /
    • 2005
  • The theory of multiple Gamma functions was studied in about 1900 and has, recently, been revived in the study of determinants of Laplacians. There is a class of mathematical constants involved naturally in the multiple Gamma functions. Here we summarize those mathematical constants associated with the Gamma and multiple Gamma functions and will show how they are involved, if possible.

  • PDF

신종 인플루엔자의 수학적 모델링 (Mathematical Modelling of the H1N1 Influenza)

  • 이상구;고래영;이재화
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제24권4호
    • /
    • pp.877-889
    • /
    • 2010
  • 수학적 모델링은 현실 상황을 재해석하고 주변의 실제 문제들을 해결하는데 유용한 방법이다. 본 논문에서는 수학적 모델링에 대한 일반 이론을 소개하고, 신종 인플루엔자에 대한 수학적 모델링을 엑셀을 이용하여 개발한다. 이 모델을 분석하고, 이런 모델이 적절한 예측과 그에 따른 정책을 결정하는데 어떤 역할을 할 수 있는지를 보인다.

HAMILTONIAN SYSTEM WITH THE SUPERQUADRATIC NONLINEARITY AND THE LIMIT RELATIVE CATEGORY THEORY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제22권3호
    • /
    • pp.471-489
    • /
    • 2014
  • We investigate the number of the weak periodic solutions for the bifurcation problem of the Hamiltonian system with the superquadratic nonlinearity. We get one theorem which shows the existence of at least two weak periodic solutions for this system. We obtain this result by using variational method, critical point theory induced from the limit relative category theory.

Freudenthal의 재발명 방법에 근거한 초등 수학영재 지도 방안 (The reinvention method for the gifted students in mathematics education according to Freudenthal's theory)

  • 강홍규
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제9권1호
    • /
    • pp.31-41
    • /
    • 2005
  • In modern theory, creativity is an aim of mathematics education not only for the gifted but also fur the general students. The assertion that we must cultivate the creativity for the gifted students and drill the mechanical activity for the general students are unreasonable. Freudenthal has advocated the reinvention method, a pedagogical principle in mathematics education, which would promote the creativity. In this method, the pupils start with a meaningful context, not ready-made concepts, and invent informative method through which he could arrive at the formative concepts progressively. In many face the reinvention method is contrary to the traditional method. In traditional method, which was named as 'concretization method' by Freudenthal, the pupils start with ready-made concepts, and applicate this concepts to various instances through which he could arrive at the understanding progressively. Freudenthal believed that the mathematical creativity could not be cultivated through the concretization method in which the teacher transmit a ready-made concept to the pupils. In the article, we close examined the reinvention method, and presented a context of delivery route which is a illustration of reinvention method. Through that context, the principle of pascal's triangle is reinvented progressively.

  • PDF