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MATHEMATICAL CONSTANTS ASSOCIATED 

WITH THE MULTIPLE GAMMA FUNCTIONS

Myungho Jung, Young Joon Cho, and Junesang Choi

Abstract. The theory of multiple Gamma functions was stud
ied in about 1900 and has, recently, been revived in the study 
of determinants of Laplacians. There is a class of mathematical 
constants involved naturally in the multiple Gamma functions. 
Here we summarize those mathematical constants associated 
with the Gamma and multiple Gamma functions and will show 
how they are involved, if possible.

1. Introduction and Preliminaries
The double Gamma function「2 and the multiple Gamma func

tions Fn were defined and studied by Barnes [7, 8, 9, 10] and others 

in about 1900. Although these functions did not appear in the ta

bles of the most well-known special functions, yet the double Gamma 

function was cited in the exercises by Whittaker and Watson [60, p. 

264] and recorded also by Gradshteyn and Ryzhik [39, p. 661, En

try 6.441(4); p. 937, Entry 8.333]. Recently, these functions were 

revived in the study of the determinants of the Laplacians on the 

n-dimensional unit sphere Sn (see Choi [14], Kumagai [47], Osgood 

et al. [49], Quine and Choi [50], Vardi [56], and Voros [58]). Shin- 

tani [53] also used the double Gamma function to prove the classical
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Kronecker limit formula. Its p-adic analytic extension appeared in 

a formula of Cassou-Nogues [13] for the p-adic L-functions at the 

point 0. More recently, Choi et al. [24, 25, 31] used these functions 

in order to evaluate some families of series involving the Riemann 

Zeta function as well as to compute the determinants of the Lapla

cians. Very recently, Choi et al. [31] addressed the converse problem 

and applied various (known or new) formulas for series associated 

with the Zeta and related functions with a view to developing the 

corresponding theory of multiple Gamma functions.

Matsumoto [48] proved asymptotic expansions of the Barnes dou

ble Zeta function and the double Gamma function, and presented an 

application to the Hecke L-functions of real quadratic fields. Before 

their investigation by Barnes, these functions had been introduced 

in a different form by (for example) Holder [42], Alexeiewsky [5], and 

Kinkelin [44].

The main object of this paper is to summarize some known math

ematical constants associated with the Gamma and multiple Gamma 

functions.

2. Euler-Mascheroni constant y and the Gamma 
function r

2.1. Its Brief History. About 270 years ago, Euler introduced 

an important mathematical constant y defined by

(2.1) Y ：= lim (L - log n\ . 
ft£1k 丿

The discovery that 1 + 1 + | + ... is divergent, is attributed by 

James Bernoulli to his brother (see Glaisher [37]) but the connection 

between 1 + 1 + …+ 1 and logx was first established by Euler [35]. 

Euler (see Walfisz [59]) gave the formula

1 1 [ 1 Bi B2 B3

1+2 + ■■■+ x = Y + logx + 2X - 2x2 + 4X4 - 6X6 + ...，
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B\,B2,…being Bernoulli numbers, in which, by putting x = 10, he 

calculated

Y = 0.57721 56649 01532 5....

The value of Euler’s constant was given by Mascheroni in 1790 

with 32 figures as follows:

Y = 0.5772156649 01532 86061811209008239...

In 1809, Soldner computed the value of y as

Y = 0.57721 56649 01532 860606065 ...

which differs from Mascheroni’s value in the twentieth place. In fact, 

Masheroni’s value turned out to be not correct. However, maybe 

since Mascheroni’s error has led to eight additional calculations of 

this constant. So y is often called the Euler-Mascheroni constant. 

Gauss in 1813 computed the 23 first decimals; in 1860 Adams pub

lished the 260 first decimals. For a rather recent computation for Y, 

we may see Knuth [46].

The true nature of Euler’s constant (whether an algebraic or a 

transcendental number) has not yet been known.

In addition, it is remarked in passing that the Euler-Mascheroni 

constant y is the third important mathematical constant next to n 

and e whose transcendence were shown by Ferdinand Lindemann in 

1882 and Charles Hermite in 1873, respectively. The mathematical 

constants n, e, and y are often referred to as holy trinity.

We can show that the infinite product

(A)

oo
n(1+z )e--

converges in the finite complex plane C to an entire function which 

has simple zeros at z = —1, -2, -3,..., this argument yields that

(B)
으 . -1

n(1+기 ez
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converges on every compact subset in C\{-1, -2, -3,... } to a func

tion with simple poles at z = —1, -2,.... Using this fact, Weierstrass 

defined the Gamma function, r(z), is a meromorphic function on C 
with simple poles at z = 0, -1, -2,..., given by

(2.2) r(z) = (1 + )ez,

n=1

where 7 is a constant chosen so that r(1) = 1. The first thing that 

must be done is to show that the constant 7 exists. Substituting 

z = 1 in (B) yields a finite number 

c=n (1+!)■ L1 

n=1 ' /

which is clearly positive. Let 7 = log c; it follows that with this choice 

of y, the equation (2.2) for z = 1 gives r(1) = 1. This constant 7 is 

just the Euler’s constant and it satisfies

8 / 1、-1
必=卩1(1+n此(C)

Since both sides of (C) involve only real positive numbers and the 

real logarithm is continuous, we may apply the logarithm function 

to both sides of (C) and obtain

8

7 = E log
k=1 

J ) e，

8「1

E k - log(k +1) + log k
k=1 Lk

lim
n—>8

n「1

E k - log(k +1) + log k
k=1
n1

=lim 〉-——log(n + 1) 
n—8 k一4 k
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Subtracting and adding log n to each term of this sequence and 

using the fact that

lim log (工丁 ) = 0 
n—8 y n + 1 丿

yields 

Y = lim 
n—»8

1 - log j，

which corresponds to (2.1).

2.2. Integral Representations for 7. Here we just present 

some known integral representations for the Euler’s constant.

(2.3)
1 - e-「 e-

7=L~^dt ~k 甘

(2.4)

(2-5)

(2-6)

(2-7)

(2-8)

—§ dt-

1 - e-t
dt.

Y =
1

1+t
-e-t

dt

t

dt.
1 - log t t log t

-e-1
t

1
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(2.9)
( 1 \ dt

Y = -0 (cost - 1 + 刁 3

(2.10) Y = 1 - /1业-丄)dt.

丿0 I t 1 + t J t

r 8 …r A- 八一t2
(2.11)

/ cos t — e 1
Y = —2 --------- dt.
0t

(2.12)
Y = log2 — n [1 [2 tan 皿 (主皿쓰 — t) dudt.

Jo Jo 2 \ sin nu /

1 f 8 "，…、一 i ―
(2.13) Y =2+ 2 丿 (1 + t2) 2 (e2 — 1) sin(tan 11) dt.

广8 i I
(2.14) Y = log 2 — 2 (1 + t2)-2 (e2混 + 1) sin(tan-11) dt.

0

(2.15) Y = /8 (丄—cosx) dX.

Jo \1 + X / X

8
(2.16) Y = — J e-t log tdt.

(2.17) Y = dt.
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(2.18)
1 2 广 t dt

2+ J0 1 + t2 • e2混一1.

Z9 1Q\ _ 1 B2 B4 丄 |B2” 11、I /8 Q2n+1(x),
(2.19) Y = 2+T + T + ••• +1^ ― (2^+1)! J1 x2n+2 血'

where the functions Qn(x) are defined by

(
x — 2 (n = 1; 0 < x < 1),

丄Bn(x — [x]) (n e N \ {1}; 0 < x < oo),
n!

Bn := Bn (0) and Bn (x) being the Bernoulli numbers and polyno

mials, respectively (see Srivastava and Choi [55, Section 1.6]). As 

observed by Knopp [45] by an explicit example with n = 3 in (2.19), 

the approximate value of 7 can easily be calculated with much greater 

accuracy than before (and, theoretically, to any degree of accuracy 

whatever) by means of the formula (2.19).

2.3. Series Representations for 7. The object of this subsec

tion is to summarize some known series representations for 7 and to 

point out that one of those series representations for 7 seems to be 

incorrectly recorded (see [16], [21], [41]).

We start by recalling a well-known series representation for 7:

(2.20) Y =

00
迪

k ,

where the Riemann Zeta function Z(s) defined by

(2.21)

0

z(s):= (况(s) > 1)



84 MYUNGHO JUNG, YOUNG JOON CHO, AND JUNESANG CHOI

is a special case when a = 1 of the Hurwitz (or generalized) Zeta 

function Z(s,a) defined by

8

(2.22) Z(s, a) := E (k + a)-s (R(s) > 1; a = 0, -1, -2,...),

k=0

which can be continued meromorphically to the whole complex s- 

plane (except for a simple pole at s = 1 with its residue 1).

(2.23) [V Z (k) - 1
7 = 1 -乙 r

(2.24) Y
k=2

(2.25)

k=1

Z(2k +1) — 1
2k + 1

(2-26) Y = log2 - 文 ①느1스1 .
k=1 k + 1

(2.27)

8

Y = log 2 - £ 
k=1

Z (2k + 1) 
(2k + 1) 22k

(2.28) Y =1 - log 2 -
2

8

k=1

Z(2k +1) — 1 
(2k + 1)22k



THE MULTIPLE GAMMA FUNCTIONS 85

(2.29)
1 K Z(2k + 1) - 1

Y = 2 — 2 log 2 — / ------------ .
Y g ^=1 (k + i)(2k +1)

(2.30)
Z(2k + D — 1

2k + 1

(2.31) 2k-1

(2.32) y = 1 -:如 Z(2")、, 
‘丿 £1 (k + 1)(2k +1)，

which is commented in the work of Ramanujan [51] who gave a gen

eral formula containing (2.31) as a very special case.

(2.33)

8 Ak

Y = log2 — 2 ]= k .
1

(3j)3 - 3j,

where

Ak := ；(3k - 1) (k = 0, 1, 2,...).
2

(2.34)
Y=2-1+fik S 눤;

(2.35) Y = + k .
2 k=1 i*】2'⑵ + 1)⑵ + 2)
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(2.36)

—, o k00 2 1

Y =1 -匚k「2匚+1矿旧.

Campbell [12, p. 200] recorded an interesting series representation 

for y which can easily be written in the form:

(2.37)
3 ▽ z(2k + 1) — 1

Y =1 - log2 - J (2k +1严-

Note that the expression of 7 in (2.37) seems to be the most rapidly 

convergent series among the ever-known series representations of 7 

by observing 1 < Z(2k + 1) < 2 for each positive integer k and the 

following rough estimations:

0 < 文 z(辭+1)— 1 < 10-65 
代(2k + 1)2k

and

0 < y z(2k + 1) -1 < 10-153

0 J (2k + 1严 10

However, when (2.37) is compared with (2.28), it is carefully con

cluded that the expression (2.37) is incorrectly recorded.

3. The double Gamma function

3.1. Its Origin and Revival. Barnes [7] defined the double 

Gamma function「2 = 1/G satisfying each of the following proper

ties:

(a) G(z +1) = r(z)G(z) (z e C);

(b) G(1) = 1；
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(c) Asymptotically,

(3.1)

log G(z + n + 2) = " + ； + Z log(2n) + 号 + n + 爲 + 寻 + (n + 1)z
2 2 12 2

log n -岑-- n — nz — log A + £ +。(n-1)

, (n — oo)

where r is the familiar Gamma function in (2.2) and A is called the 

Glaisher-Kinkelin constant defined by

.. [二 / n2 n 1\ n2)
(3-2) log A = lim <k log k - 5 + 5 + 苟)logn + 才(， m [kM ' 2 2 12 丿 4 J

the numerical value of A being given by

A = 1.282427130 - - •.

From this definition, Barnes [7] deduced several explicit Weier

strass canonical product forms of the double Gamma function「2, 

one of which is recalled here in the form:

(3.3)

{「2(z + 1)} 1 = G(z + 1)
小、1 z ( 1 L 1、2」 為[人 Z\k / Z2 \ )(2n) 2 exn z (+ 1)z <11 + exn z +

=(2n) exp [ 2 2(7 +1)z 丿丄丄 1 V1 + k exp [ z + 2k 丿 ，
\ / k=i I \ 丿)

where 7 denotes the Euler-Mascheroni constant given (1.1).

Barnes [7] also gave two more equivalent forms of the double 

Gamma function「2:

(3.4)

{「2(z + 1)} 1 = G(z + 1)
—、1, ，1, 八 1 八

=(2n)2 exP(—分z(z +1) —2Yz J

「(&)exn "j(k) + 1 z2 心/(k)
11 r(z + k)exp z心(k) + 2z 卬(k) ；
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(3.5)

{「2(z + 1)}-1 = G(z + 1) = (2n)1 z exp
+ 1 + y) z2

2

oo oo ' / \ / 2

r(z + 1) • H H ( 1 +--- ---  ) exp (--- ---- + —一-——-2

m=0n=o * m+n v m+n 2(m+n)2

),

where the prime denotes the exclusion of the case n = m = 0 and the 

Psi (or Digamma) function p is given by ©(z) = F(z)/r(z). Each 

form of these products is convergent for all finite values of |z|, by the 

Weierstrass factorization theorem ([see Conway [32, p. 170]).

The double Gamma function satisfies the following relations:

(3.6) G(1) = 1 and G(z +1) = r(z)G(z) (z e C).

For sufficiently large real x and a e C, we have the Stirling formula 

for the G-function:

(3.7)

log G(x + a + 1) = 兰扌으 log(2n) - log A + * -
2 12

3x2
- ax

4

+ (xr - 1= + ? + ax、) logx + O (L)
2 12 2

(x — oo).

The following special values of G (see Barnes [7]) may be recalled 

here: 

(3-8) G 2器•n-1•e8•A-2;

(3.9)

............. 一一 , (n!)n , , 
G(n+2) = 1! 2! • • • n! and G(n+1) = 1 2 32 43---打打― (n e N).

It should be remarked in passing that the double Gamma function 

「2 and the multiple Gamma function Tn in Section 4 have, recently, 

been revived in the study of determinants of Laplacians (see, e.g. 

[14], [47], [56], [58]).
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3.2. Various Representations for A. We just record some of 

various known representations for the Glaisher-Kinkelin constant A. 

We can express log「2 (a) as improper integrals in many ways. For 

example, we give two integral representations for log「2 (a) (see [2이): 
(3.10)

1 a2 1 2 1\「
log「2 (a) =---- + log A---- + -a2-- a ) log a + (1 — a) logF(a)

2 12 4 2 2

+ 2 / {^(a2 + t2)2 sin (arctan log(a2 + t2)

+ (a2 + t2) 1 cos (arctan 匕) arctan — dt

e2混一1

(况(a) > 0);

(3.11) 2 2

log r2(a) =log A — ^4+( — — a + 1=) log a + (1 — a)logr(a) 
4 2 2 12

—L S—r—1+2

Glaisher [38, p. 47] expressed the

as an integral:

)log a + (1 — a) logF(a)

―药)厂 dt (况(a) > 0).
12 t2

Glaisher-Kinkelin constant A

A = 236n-6 exp (3 + 3

By setting a = 1 in (3.10) and (3.11), we can also obtain integral 

representations of log A:

r . 1 广 8 Fllog A =3 - 2 /

+ (1 +12)2 cos (arctant) arctant} f祟一j-

(3.12)

(3.13)

[log r(t +1) dt).

2(1 + t2)2 sin (arctan t) log(1 + t2)

and

(3.14)
..1 广 / 1 1 1 tW
gA = 4 + Z (部—i — 7 +2 —亙丿衬d
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Recall the Euler-Maclaurin summation formula (cf. Hardy [40, p. 

318]):

n 广 n 1 8 b

(3-15) E /(k) ~ Co + J /(x) dx + - /(n) + 匚(頒〒/(2r-1)(n), 

where Co is an arbitrary constant to be determined in each special 

case and

Bo = 1, B1 =---, B2 = —, B4 =--- , Bq =—,
0 , 1 2, 2 6, 4 30, 6 42,

B8 =—拓, B10 = 77, …and B2n+1 = 0 (n € N) 
30 66

are the Bernoulli numbers (see Srivastava and Choi [55, Section 1.6]).

By using the Euler-Maclaurin summation formula (2.15), we can 

obtain a number of analytical representations of Z(s), such as [cf. 

Hardy [40, p. 333)]

(3.16)
(n

z(s) = lim k~sn—8 
lk=1

n1-s

1—s

-n-s + 12sn-，-1} (R(s) > —3).

We may differentiate (3.16) under the limit sign at s = — 1 to get 

(3.17)

(二 /n2 n 1、 n2 1 )
Z (—1) = lim < — y k log k + (--- 1--- 1-- )log n----- 1-- > .
八丿 n—8 [ £1 ^2 2 12丿 & 4 12 J

Comparing (3.2) and (3.17), we find that

A = exp (—Z'(—1) + 12).

Choi and Nash [18] obtained a class of integral representations of

A:

(3.18)

(3.19)

log A =1 + £(3+ logP — W

8 24 \ p2 — 1 丿 p2 — 1 匕， 顶log顶

{^(1 + t) + 少(1 — t)} dt
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where p is an odd positive integer greater than 1.

We give a relationship among n, 7, A, and Z'(2)： 

(3.20) Y =" + log 專. 
n2 2n

4. Multiple Gamma functions

4.1. Definitions. There are two known ways to define an n-ple 

Gamma functions Fn: Barnes [1이 (see also Vardi [56]) defined Fn by 

using the n-ple Hurwitz Zeta functions (see Choi and Quine [1이); A 

recurrence formula of the Weierstrass canonical product forms of the 

n-ple Gamma functions Fn was given by Vigneras [57] who used the 

theorem of Dufresnoy and Pisot [34] which provides the existence, 

uniqueness, and expansion of the series of Weierstrass satisfying a 

certain functional equation.

By making use of the aforementioned Dufresnoy-Pisot theorem 

and starting with

8

⑷1) /13)=—曾+£ & - log(1+n)}，
n=1

Vigneras [57] obtained a recurrence formula of Fn (n 6 N) which is 

given by

Theorem 1. The n-ple Gamma functions Fn are defined by

(4.2) rn(z) = {Gn(z)}(T)"T (n 6 N),

where

(4.3) Gn (z +1)= exp (fn (z))

and the functions fn(z) are given by

(4.4) fn(z) = —x An(1) + F Pk(z)
f찌1 (0) - Ank)(1)]+An(z),
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with

(4.5)

V-[言 z V If z ", 
B—圭丄XN "(顽丿—顼顽丿+

+(-i)n-1 L(m)+(-i)n iog (1+L(m^)]' 

where

L(m) = mi+m2 + • . -+mn if m = (mi, m2, ... , mn) 6 N0n-1 xN 

and the polynomials

Pn(z) = 1n + 2n + - - - + (z — 1)n

satisfy the following relations:

(4.6) p'n(z) = Bn (z) and pn (0) = 0,

Bn(z) being the nth Bernoulli polynomials.

By analogy with the Bohr-Mollerup theorem (see Srivastava and 

Choi [55, p. 13]), which guarantees the uniqueness of the Gamma 

function r, one can give for the double Gamma function and (more 

generally) for the multiple Gamma functions of order n (n 6 N) a 

definition of Artin by means of the following theorem (see Vign6ras 

[57, p. 239]).

Theorem 2. For all n 6 N, there exists a unique meromorphic 

function Gn (z) satisfying each of the following properties:

(a) Gn (z + 1) = Gn-1 (z) Gn (z) (z 6 C)；
(b) Gn(1) = 1；

(c) For x > 1, Gn (x) are infinitely differentiable and

dn+i

{log Gn (x)} > 0；
dxn+1
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(d) Go(x) = x.

When n = 3 in (4.2), we readily obtain an explicit form of the 

triple Gamma function「3:
(4.7)

「3 (1 + z) =G3 (1 + z)
=5{(i+k)-1 k(k+1)

k=1 I
、 1 / 1、2 1( n 3］〕

.exn — (k + 1) z — — I 1 + — I z + __  I 1 + — I z >exp I z I z I I z ,
卩［2，丿 4, k 丿 6k I kJ H ,

where, for convenience,

»、 1( n2 3、3 1 / — 1、2
R(z) := I y +-- \——I z3 + 二 I y + log(2n) +——I z2

' 丿 6 V 6 2) 4^/ 况 2丿

+ (8 - 4 log(2n) - log厶)z

4.2. Bendersky-Adamchik Constants. Letting f (x) = x2 log x 

and f (x) = x3 logx in (3.15) with a = 1, we obtain

(4.8) 「

】C U h 2】7 ( n3 , n2 , n， , n3 n
log B = lim 工 k log k — 亍 + 5 + a log n + k -石n—8 £\ 3 2 6丿 9 12

and

(4.9)

1 " 1•…U, 3 — 7 5" n" n2 , n4 n2

log c = *m。［丄 k log k - (T + T + T ―旬丿 log n +16 ―正

respectively; here B and C are constants whose approximate numer

ical values are given by

B = 1.03091675 ...
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and

C = 0.97955 746 ....

The constants B and C were considered recently by Choi and 

Srivastava ([23, p. 102], [25]). See also Adamchik [2, p. 199]. Ben

dersky [11] presented a set of constants including B and C: There 

exist constants Dk defined by

(4.10) log Dk := lim (mk log m — p(n,k) ) (k E N0),
n—8

\m=1 /

where the definition of p(n, k) in Adamchik [2, p. 198, Eq.(20)] is 

corrected here as follows:

nk nk+1 f 1 、
2 k +1 (log n - k +1丿

,.、一、 nk—j Bj+1 / 、 (r 1
+ k!三 j+1)!(k - j)! [logn+(1 —膈)g 匸i+r

and §kj is the Kronecker symbol defined by §kj = 0 (k = j) and 

徧=1 (k = j).

For the constants Dk (k E N0) defined in (4.10), we can show that

D0 = (2n)1, Di = A, D2 = B, and D3 = C, 

and
log Dk = 뜩+쁴 — Z'(—k) (k E N0) ,

k+1

where Bn are the Bernoulli numbers and Hn are the harmonic num

bers, and the mathematical constants A, B, and C are given as above 

(see Adamchik [2, pp. 198-199]).

The constants introduced in this section can be seen to be involved 

in the theory of multiple Gamma functions. For example, see the 

following identities (Srivastava and Choi [55, p. 39; p. 247]):

1

⑷瑚 / logG(t+1)dt = =(log2+1) + Ulogn—； log A—万 logB
0 24 16 4 4
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in terms of the mathematical constant B defined by (4.8);

(4.132) 1 1

/ log fa (t + 2) dt = / log G(t + 1) dt + / log fa (t + 1) dt

+ / logF(t + 1) dt + 2 / log G(t + 1) dt + / logr3 (t + 1) dt

Jo Jo Jo

259 29 [ c , 9 [ 15] , 5] , 15]

768 1920 log2+ 1치0g n - 布 log A - 4log B + 布 log C

4.3. Another version of Bendersky-Adamchik Constants. 

We begin by recalling the Euler-Maclaurin summation formula (cf. 

Abramowitz and Stegun [1, p. 806]): Let K E N and a, b G R with 

a < b. Suppose that f has continuous derivatives through the Kth 

order on the interval [a, b]. Then we have 

(4.13)

— K ▼으 (一1)m ， 八
E f(n)^ f(x)dx +E 느」Bm({b})f(m-1)(b)

a<n<b Ja m=1 ^

— A (-1严 B ({a})f (m-1)(a) — (-1)으 B ({x})f (K) (x)dx
，/ m! Bm({a})f (a) 心.J bk({x})f (x)dx，

where {x} denotes the fractional part of any x G R, i.e., {x} = x-[x], 

[x] being the greatest integer < x.

Setting f(x) = 1, a = 1, b = N, K = 1 in (4.13), and taking 

the limit of the resulting equation as N — x, we obtain the Euler- 

Mascheroni constant y given in (1.1).

By appealing to the Leibniz’s rule for differentiation, we find that 

the mth order derivative of f (x) := xk-1 logx (k G N) is

(4.14)
f(m)(x) = ak,m xk-m-1 log x + ⑶m xk-m-1

(0 < m < k — 1; m G No),
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where the constants a^ m and 月k m are given as follows:
(4.15) ' '

_ (k — 1)! d 月 — (k — 1)! ▽ ___ 1______
ak,m (k — m — 1)! k,m (k — m — 1)! j=f k — m — 1 + j

(0 < m < k — 1; m e N0).

Note also that

(4.16) f (k)(x) = 으스二1
x

and f (k+1)(x) = — 으竺T1 
x2

We prove the following identity:

(4.17)

F (—1)m s _ ( —1)k

2」~mr m "t =一厂 
m=1

m!
E (3 m Bk-m + k2 (k e N), 

mm
m=1

the empty sum being interpreted (as usual, in what follows) to be 

nil.

Indeed, since (4.17) holds trivially for k = 1, we assume k e 
N \{1}. Let

k—1
Sk :=(—1)k k >2 (二kBm l3k,m—1 (k e N \{1}),

m=1
m!

which, upon setting n = k — m and using (4.15), yields

(4.18)

k —1/7 \ k—n—1 1
Sk = 2 0(n)Bk-n j=1 顽

Define a function H(x) given by

k-1 /k\ k-n-1
(4.19) H(x):=】(—1)n( j Bk-n £ xn-1+j

n=1 、) j=1
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Since the innermost sum is a finite geometric series and

Sk = / H(x) dx,

Jo

we find that

(4.20)
h(x) - xk-1h(1)

(x) = 1 - x

where, for convenience,

h(x):= £(：)Bk —n (-x)n.

It follows from Equations (3) and (4) in Sri+Choi [..., p. 59] that

(4.21)
h(x) =Bk(-x) - Bk - (-x)k

=Bk(1 - x) - Bk - k(-x)k 1 - (-x)k

which, upon setting x = 1, yields

(4.22) h(1) = (-1)k (k -1).

Putting (4.21) and (4.22) into (4.20), we get

H(x) = B(1 - x) - B + (-1)k xk-1
1-x

which, upon integrating from 0 to 1 and changing the variable t = 

1 - x, gives

(4.23)
Sk = J： " dt +辛
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Applying Equation (3) in Srivastava and Choi [55, p. 59] to (4.23), 

we obtain

(4.24) Sk =】(")丄 Bk-m +(-1)k；, 

乙」\m丿m k
m=1 、 /

which, upon dividing by (—1)k k, leads to the desired identity (4.17).
Setting f (x) = xk-1 logx (k e N), a = 1, b = N (N e N \ {1}), 

and K = k + 1 in (4.13), and using (4.17), we can obtain a class of 

mathematical constants {Ck }keN defined, for k e N, by

Ck := lim
N T8

?、 N k N k

£ 护-1 log n — log N + 飞2
_n=1

(4.25)

k-E
m=1

k-1-E
m=1

(—1)m ,____() Bm ak,m-1 Nk-m log N
m!

( 1)m
() Bm 位,m-1 Nk-m ,

m!

where ak,m and 月k,m are defined by (4.15) (see Choi and Lee [17]).

Remark 1. In the process of getting the constants Ck in (4.25), 

we find that

(4.26)

C (-1)k k k 1 B (-1)k B

Ck = - k 》八m) mBk-m 1 k(k + 1) Bk+1
m=1

-上也 广"({x}) dx (k e N) 
k(k + 1) J1 x2 (k "

Remark 2. It follows from the Stirling’s formula for n!: 

(4.27)
nn

n!〜(—丿 V 2nn (n — oo)
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that Ci = log ^/2兌. Note also that C2 = log A, where A is the 

Glaisher-Kinkelin constant given in (3.2); C3 = log B, and C4 = 

log C, where the constants B and C are given in (4.8) and (4.9), 

respectively.

Remark 3. The set of constants {Ck}keN has already been con

sidered in the works of Bendersky [11] and Adamchik [2] who gave 

the constants {Dk}keN0 in (4.10).

It should be noted in passing that log Dk-i = Ck (k E N).

Remark 4. As a matter of fact, Choi and Lee [17] introduced 

the constants {Ck}keN in (4.26) in order to evaluate the following 

family of series associated with the Riemann zeta function:

▼쯔、(一1)mE (-4 Z(m) (k E No).

乙」 m + k
m=2

This interesting and useful research subject, closed-form evaluations 

of various families of series associated with the Zeta functions, has a 

long history (see Srivastava and Choi [55, Chapter 3]).

Remark 5. Very recently, Choi and Srivastava [28] also intro

duced a set of mathematical constants which is more generalized 

than two families of constants given in (4.10) and (4.26).
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