• Title/Summary/Keyword: theoretical equation

Search Result 1,659, Processing Time 0.068 seconds

Transformation of Regular Waves on Currents in Water of Slowly Varying Depth-Theoretical Study (흐름이 존재하는 완경사 해역에서의 파랑변형-이론적 고찰)

  • 채장원;정신택;엄대기;안한수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1989
  • Theoretical studies have been made to analyze combined refraction diffraction of the wind waves propagating on a large scale current in water of varying depth. The governing equation for monochromatic waves was derived through splitting a mild slope equation into two equations. A numerical model is developed using finite difference scheme which is computationally very efficient for modelling large area. Numerical examples concerning the interactions between waves and rip currents over a gentle slope are presented, in which the current effects on the wave diffraction in the caustic region are closely examined.

  • PDF

Fundamentals of Stress-Induced Diffusion: Theoretical Approach to Hydrogen Transport through Self-Stressed Electrode

  • Lee, Sung-Jai;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • This article covers the fundamentals of stress-induced diffusion, focusing on the theoretical model for hydrogen transport through self-stressed electrode. First, the relationship between hydrogen diffusion and macroscopic deformation of the electrode specimen was briefly introduced, and then it was classified into the diffusion-elastic and elasto-diffusive phenomena. Next, the transport equation for the flux of hydrogen caused simultaneously by both the concentration gradient and the stress gradient was theoretically derived. Finally, stress-induced diffusion was discussed on the basis of the numerical solutions to the derived transport equation under the permeable and impermeable boundary conditions.

Three Reasons We May Shun the Research Practice That Employs Formative Measurement in the Endogenous Position

  • Kim, Gimun;Shin, Bongsik;Kim, Kijoo
    • Journal of Information Technology Applications and Management
    • /
    • v.20 no.3
    • /
    • pp.129-141
    • /
    • 2013
  • When the formative construct is placed in the endogenous position, there are clear theoretical, mathematical, and empirical issues in model estimation. Nonetheless, scholars who have adopted structural equation modeling for empirical research and those who are engaged in debates on the viability of formative modeling fail to recognize the fundamental problems of employing formative measurement in the endogenous position. This manuscript is intended to set a corrective path by discussing three reasons why this frequented practice may be avoided in both theoretical and empirical research.

The Rheological and Mechanical Model for Relaxation Spectra of Polydisperse Polymers

  • Kim, Nam Jeong;Kim, Eung Ryul;Hahn Sang Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.413-419
    • /
    • 1992
  • The theoretical equation for the relaxation spectrum of nonlinear viscoelastic polymeric material was derived from the Ree-Eyring and Maxwell non-Newtonian model. This model consists of infinite number of hyperbolic sine law Maxwell elements coupled in parallel plus a spring without a dashpot. Infinite number of nonlinear viscoelastic Maxwell elements can be used by specifying distribution of relaxation times, hole volumes, molecular weights, crystallite size and conformational size, etc. The experimentals of stress relaxation were carried out using the tensile tester with the solvent chamber. The relaxation spectra of nylon 6 filament fibers in various electrolytic solutions were obtained by applying the experimental stress relaxation curves to the theoretical equation of relaxation spectrum. The determination of relaxation spectra was performed from computer calculation.

The Theoretical Analyses of the Soil Erosion and Conservation 3. Analytical Theory of Slope Erosion (토양의 침식과 보존에 관한 이론적 분석 3. 사면 토양의 침식에 관한 이론)

  • 장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.10 no.1
    • /
    • pp.41-47
    • /
    • 1996
  • The theory of slope erosion is developed along similar lines to the theory of heat flow in solid added to the correcting factor. if slope erosion in the forest and grassland proceeds according to the hypothesis, it is $\delta$y $\delta^2$y = k $\delta^2$y $\delta$$X^2$+f(s b. t) where 5 is internal properties of slope soil and b is biota on slope. When the variables of the equation of slope erosion are x = -λ the initial elevation=-f(λ), x=λ, x==a, the steady value of the initial elevation=y, and dy dx x=0> =O(t>o), respectively, the houndary condition due to the solution of the equation of slope erosion is y= 2 √$\pi$kt [∫a o λe $(X-λ)^2$4kt dλ- ∫ao- $(x+λ)^2$4kt dλ] + ∫∫∫ f (s.b. t)dtdbds

  • PDF

Inconsistency in the Average Hydraulic Models Used in Nuclear Reactor Design and Safety Analysis

  • Park, Jee-Won;Roh, Gyu-Hong;Park, Hangbok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.599-604
    • /
    • 1997
  • One of important inconsistencies in the six-equation model predictions has been found to be the force experienced by a single bubble placed in a convergent stream of liquid. Various sets of governing equations yield different amount of forces to hold the bubble stationary in a convergent nozzle. By using the first order potential flow theory, it is found that the six-equation model can not be used to estimate the force experienced by a deformed bubble. The theoretical value of the particle stress of a bubble in a convergent nozzle flow has been found to be a function of the Weber number when bubble distortion is allowed. This force has been calculated by using different sets of governing equations and compared with the theoretical value. It is suggested in this study that the bubble size distribution function can be used to remove the presented inconsistency by relating the interfacial variables with different moments of the bubble size distribution function. This study also shows that the inconsistencies in the thermal-hydraulic governing equation can be removed by mechanistic modeling of the phasic interface.

  • PDF

Evaluation of surface displacement equation due to tunnelling in cohesionless soil

  • Mazek, Sherif A.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.55-73
    • /
    • 2014
  • The theoretical predictions of ground movements induced by tunnelling are usually based on the assumptions that the subsoil has the same soil densities. The theoretical prediction does not consider the impact of different sand soil types on the surface settlement due to tunnelling. The finite elements analysis (FEA) considers stress and strength parameters of the different sand soil densities. The tunnel construction requires the solution of large soil-structure interaction problem. In the present study, the FEA is used to model soil-tunnel system performance based on a case study to discuss surface displacement due to tunnelling. The Greater Cairo metro tunnel (Line 3) is considered in the present study as case study. The surface displacements obtained by surface displacement equation (SDE) proposed by Peck and Schmidt (1969) are presented and discussed. The main objective of this study is to capture the limitations of the parameters used in the SDE based on the FEA at different sand soil densities. The study focuses on the parameters used in the SDE based on different sand soil densities. The surface displacements obtained by the FEA are compared with those obtained by the SDE. The results discussed in this paper show that the different sand soil densities neglected in the SDE have a significant influence on the surface displacement due to tunnelling.

Experimental and Theory for Relaxation Spectrum of Polyacrylonitrile-Poly(vinyl chloride) Copolymers (Polyacrylonitrile-Poly(vinyl chloride) 공중합체 완화스펙트럼의 실험과 이론적인 고찰)

  • Kim, Nam-Jeong
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.232-237
    • /
    • 2011
  • The relaxation spectra of polyacrylonitrile-poly(vinyl chloride) copolymer filament fibers were obtained by applying the experimental stress relaxation curves to the theoretical equation of relaxation spectrum. The theoretical equation of relaxation spectrum was derived from the Ree-Eyring and Maxwell model. The experimental of stress relaxation was carried out using a tensile tester with a solvent chamber. The determination of relaxation spectra was performed by computer calculation. From the relaxation spectra, the fine structures, viscoelastic properties and hole volumes of solid polymers were studied. It was observed that the relaxation spectra of these samples were directly related to the distribution of molecular weights and self diffusions of flow segments.

A Study on Internal Loss Analysis of Totem Pole Bridgeless PFC and Efficiency Improvement using Parallel Switch (토템폴 브릿지리스 PFC의 내부 손실 분석과 병렬 스위치를 사용한 효율 개선에 관한 연구)

  • Yoo, Jeong Sang;Gil, Yong Man;Yu, Seung Hyup;Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.22-27
    • /
    • 2020
  • In this paper, a generalized efficiency equation was proposed to estimate the internal loss of the SMPS (switched-mode power supply) with 3 variables. The first variable was an internal loss not related to the load current such as auxiliary power, the second was a loss proportional to the current such as diode loss, and the third was a loss proportional to square of the current such as conduction loss. Especially, theoretical internal losses of the totem pole bridgeless PFC which is widely used for high efficiency SMPS were expressed as output function to compare generalized efficiency equation. In addition, in order to reduce the conduction loss of the switch, when a multiple switch were paralleled, the correlation with the efficiency was analyzed and shown as a graph. In order to confirm the degree of the parallel switch structure on the efficiency improvement, a 2kW class totem pole bridgeless PFC was constructed and the effectiveness of the analysis was confirmed by comparing the generalized efficiency equation and theoretical loss analysis results with experimental data.

Measurement of Terminal Velocity for Scatter Prevention of Powder in the Voloxidizer for Oxidation of UO$_{2}$ Pellet (UO$_{2}$ 펠릿 산화로의 분말 비산 방지를 위한 최종속도 측정)

  • Kim Young-Hwan;Yoon Ji-Sup;Jung Jae-Hoo;Jin Jae-Hyun;Hong Dong-Hee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.77-84
    • /
    • 2005
  • A voloxidizer for a hot cell demonstration, that handles spent fuels of a high radiation level in a limited space should be small and spent fuel powders should not be dispersed out of the equipment involved. In this study a density rate equation as well as the Stokes'equation has been proposed in order to obtain the theoretical terminal velocity of powders. The terminal velocity of U$_{3}$O$_{8}$ has been predicted by using the terminal velocity of SiO$_{2}$, and then determination has been the optimum air flow rate which is able to prevent powders from scattering. An equation which has shown a relationship between theoretical terminal velocities of U$_{3}$O$_{8}$ and SiO$_{2}$ has been derived with the help of the Stokes'equation, and then an experimental verification made for the theoretical Stokes' equation of SiO$_{2}$ by means of an experimental device made of acryl. The theoretical terminal velocity based on the proposed density rate equation has been verified by detecting U$_{3}$O$_{8}$ powders in a filter installed in the mock-up voloxidizer. As the results, the optimum air flow rates seem to be 20 LPM by the Stokes'equation while they are 14.5 L/min by the density rate equation. At the experiments with the mock-up voloxidizer, a trace amount of U$_{3}$O$_{8}$ seems to be detectable at the air flow rate of 14.5 L/min by the density rate equation, but U$_{3}$O$_{8}$ powders of 7$\mu$m diameter seem detectable at the air flow rate of 20 L/min by the Stokes'equation. It is revealed that 14.5 L/min is the optimum air flowe rate which is capable of preventing U$_{3}$O$_{8}$ powders from scattering in the UO$_{2}$ voloxidizer and the proposed density rate equation is proper to calculate the terminal velocity of U$_{3}$O$_{8}$ powders.

  • PDF