DOI QR코드

DOI QR Code

Fundamentals of Stress-Induced Diffusion: Theoretical Approach to Hydrogen Transport through Self-Stressed Electrode

  • Lee, Sung-Jai (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Pyun, Su-Il (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2005.02.01

Abstract

This article covers the fundamentals of stress-induced diffusion, focusing on the theoretical model for hydrogen transport through self-stressed electrode. First, the relationship between hydrogen diffusion and macroscopic deformation of the electrode specimen was briefly introduced, and then it was classified into the diffusion-elastic and elasto-diffusive phenomena. Next, the transport equation for the flux of hydrogen caused simultaneously by both the concentration gradient and the stress gradient was theoretically derived. Finally, stress-induced diffusion was discussed on the basis of the numerical solutions to the derived transport equation under the permeable and impermeable boundary conditions.

Keywords

References

  1. F. A. Lewis, S. G. McKee, and R. A. McNicholl, Z. phys. Chem., 179, 63 (1993) https://doi.org/10.1524/zpch.1993.179.Part_1_2.063
  2. J.-N. Han, S.-I. Pyun, and D.-J. Kim, Electrochim. Acta, 44, 1797 (1999) https://doi.org/10.1016/S0013-4686(98)00337-5
  3. S.-I. Pyun, J.-N. Han, and T.-H. Yang, J. Power Sources, 65, 9 (1997) https://doi.org/10.1016/S0378-7753(96)02647-X
  4. M. Geng, J. Han, F. Feng, and D. O. Northwood, Int. J. Hydrogen Energy, 25, 203 (2000) https://doi.org/10.1016/S0360-3199(99)00046-4
  5. A. Ztittel, F. Meli, D. Chartouni, L. Schlapbach, F. Lichtenberg, and B. Friedrich, J. Alloys Compd., 239, 175 (1996) https://doi.org/10.1016/0925-8388(96)02259-1
  6. H. Peisl, in: G. Alefeld, J. Volkl (Eds.), 'Hydrogen in Metals I', Springer, Berlin, pp.321-348 (1978)
  7. F. A. Lewis, K. Kandasamy, and B. Baranowski, Platin. Met. Rev., 32, 32 (1988)
  8. B. Baranowski, J. Less-Common Met., 154, 329 (1989) https://doi.org/10.1016/0022-5088(89)90218-X
  9. F. A. Lewis, K. Kandasamy, and B. Baranowski, Int. J. Hydrogen Energy, 13, 439 (1988) https://doi.org/10.1016/0360-3199(88)90130-9
  10. K. Kandasamy, F. A. Lewis, J. P. Magennis, S. G. McKee, and X. Q. Tong, Z. phys. Chem., 171,213 (1991) https://doi.org/10.1524/zpch.1991.171.Part_2.213
  11. X. Q. Tong, Y. Sakamoto, F. A. Lewis, R. V. Bucur, and K. Kandasamy, Int. J. Hydrogen Energy, 22, 41 (1997)
  12. J.-N. Han and S.-I. Pyun, J. Korean Electrochem. Soc., 4, 70 (2001)
  13. J.-N. Han and S.-I. Pyun, Electrochim. Acta, 45, 2781 (2000) https://doi.org/10.1016/S0013-4686(00)00388-1
  14. J.-N. Han, J.-W. Lee, M. Seo, and S.-I. Pyun, J. Electroanal. Chem., 506, 1 (2001) https://doi.org/10.1016/S0022-0728(01)00481-8
  15. F. A. Lewis, J. P. Magennis, S. G. McKee, and P. J. M. Ssebuwufu, Nature, 306, 673 (1983) https://doi.org/10.1038/306673a0
  16. Baranowski, 'Diffusion in Elastic Media with Stress Fields', Taylor & Francis, New York, pp.168-199 (1992)
  17. P. Zoltowski, J. Electroanal. Chem., 512, 64 (2001) https://doi.org/10.1016/S0022-0728(01)00584-8
  18. F. A. Lewis, K. Kandasamy, and X. Q. Tong, Int. J. Hydrogen Energy, 27, 687 (2002) https://doi.org/10.1016/S0360-3199(01)00091-X
  19. W. S. Zhang, X. W. Zhang, and Z. L. Zhang, J. Alloys Compd., 302, 258 (2000) https://doi.org/10.1016/S0925-8388(99)00824-5
  20. R. Kirchheim, Acta Metall., 34, 37 (1987)
  21. F. C. Larche and J. W. Cahn, Acta Metall., 30, 1835 (1982) https://doi.org/10.1016/0001-6160(82)90023-2
  22. K. Kandasamy and F. A. Lewis, Int. J. Hydrogen Energy, 24, 763 (1999) https://doi.org/10.1016/S0360-3199(98)00125-6
  23. P. Zoltowski, Electrochim. Acta, 44, 4415 (1999) https://doi.org/10.1016/S0013-4686(99)00157-7
  24. P. Zoltowski, J. Electroanal. Chem., 501, 89 (2001) https://doi.org/10.1016/S0022-0728(00)00507-6
  25. F. C. Larche and J. W. Cahn, Acta Metall., 33, 331 (1985) https://doi.org/10.1016/0001-6160(85)90192-0
  26. F. A. Lewis B. Baranowski, and K. Kandasamy, J. Less-Common Met., 134, L27 (1987)
  27. X. Q. Tong, K. Kandasamy, and F. A. Lewis, Scr. Metall. Mater., 24, 1923 (1990) https://doi.org/10.1016/0956-716X(90)90052-I
  28. F. Sakamoto, X. Q. Tong, and F. A. Lewis, Scr. Metall. Mater., 25, 1629 (1991) https://doi.org/10.1016/0956-716X(91)90465-D
  29. S. A. Teukolsky, Phys. Rev. D, 61, 087501 (2000) https://doi.org/10.1103/PhysRevD.61.087501
  30. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. 'Numerical Recipes in C++', Cambridge University Press, New York, pp.133-139, pp.829-855 (2002)
  31. A. M. Simon and Z. J. Grzywna, Acta Metall. Mater., 40, 3465 (1992) https://doi.org/10.1016/0956-7151(92)90061-I
  32. K. Kandasamy, Scr. Metall., 22, 479 (1988) https://doi.org/10.1016/0036-9748(88)90009-9