• Title/Summary/Keyword: theoretical discharge volume

Search Result 25, Processing Time 0.024 seconds

Development of a New Tooth Profile Designed for High Efficiency P/M Internal Gear Pump Rotors

  • Inui, Naoki;Ogata, Daisuke;Sasaki, Harumistu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.940-941
    • /
    • 2006
  • We developed a new tooth profile designed for P/M internal gear pump rotors. The theoretical discharge volume of the new tooth profile internal gear rotors is more than 10% higher than that of the same size conventional rotors. Our new profile rotors can achieve a decrease in torque, and fuel-efficiency will also be improved.

  • PDF

FLUID-GRANULE MIXED FLOIW DOWNSTREAM OF SCOUR HOLE AT OUTLET OF HYDRAULIC STRUCTURE

  • Kim, Jin-Hong;Shim, Myung-Pil;Kim, Kyung-Sub
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • This study presents the theoretical approach for volume concentration, velocity profile, and granular discharge on the fluid-granule mixed flow downstream of the scour hole at the outlet of the hydraulic structure. Concept of dilatant model was applied for the stress-strain relationships of fluid-granule mixed flow since the flow downstream of the scour hole corresponds to debris flow, where momentum transfers through particle collisions. Mathematical formulations were derived using momentum equation and stress-strain relation of the fluid-granule mixture. Velocity profile under the assumption of uniform concentration over flowing layer showed the downward convex type. Deposition angle of downstream hump was found to be a function of an upstream slope angle, a dynamic friction angle and a volume concentration irrespective of flow itself, Granular discharge and the overflow depth were obtained with given values of inflow rates. Experimental results showed relatively good agreements with theoretical ones.

  • PDF

A Study on the Discharge Pressure Ripple Characteristics of Variable Displacement Vane Pump (가변용량형 유압 베인펌프의 토출압력맥동 특성 연구)

  • 장주섭;김경훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.106-114
    • /
    • 2003
  • The pressure ripple in the delivery port is caused by flow ripple, which is induced by variation of pumping chamber volume. The other reason is the reverse flow from the outlet volume produced by pressure difference between pumping chamber and outlet volume, when the pumping chamber is connected with the outlet volume. In this study, a mathematical model is presented for analyzing discharge pressure ripple, which includes vane detachment, cam ring movement , and fluid inertia effects in V-groove in the side plate. From the analysis and experiment, it was found that V-groove on the side plate, coefficient of spring supporting the cam ring, and average discharge pressure are the main factors of discharge pressure ripple in variable displacement vane pump. The theoretical results, provided in this study, were well agreed with experimental results. The analytical model to estimate the magnitude of pressure ripple in this study is expected to be used f3r the optimal design of the variable displacement vane pump.

Theoretical Model and Experimental Results of PECVD Amorphous Silicon Deposition Process (PECVD 비정질 실리콘 증착 반응의 이론적 모델과 실험결과)

  • 김진홍;남철우;김성일;김용태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.7
    • /
    • pp.1049-1058
    • /
    • 1990
  • Mathematical modeling equations of a parallel plate type reactor were obtained in the PECVD process in preparing hydrogenated amorphous silicon. Velocity profiles, temperature profiles and concentration profiles in the reactor were calculated from the model. The theoretical approach was attempted to obtain the deposition rate and film uniformity at different operating conditions by calculating RF discharge parameters and establishing the reaction mechanisms of a-Si:H thin film. The modelling equations are solved by a finite difference method with control volume balance. The mean electrom energy in discharge was applied to model simulation parameter. The magnitudes of the predicted deposition rate are in good aggrement with those of experiment. The results of computer simulation shows that uniform deposition profiles can.

  • PDF

Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries (소듐 이온전지용 주석 음극의 안정화를 위한 PVdF 옥세틱 구조의 영향)

  • Park, Jinsoo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.507-513
    • /
    • 2018
  • This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.

A Study on the Discharge Pressure Ripple Characteristics of the Pressure Unbalanced Vane Pump (압력 비평형형 유압 베인 펌프의 토출 압력 맥동 특성 연구)

  • Jang, Joo-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.55-63
    • /
    • 2009
  • This paper reports on the theoretical and experimental study of the pressure ripples in a pressure unbalanced type vane pump which have widespread use in industry. Because they can infinitely vary the volume of the fluid pumped in the system by a control. Pressure ripples occur due to the flow ripples induced by geometry of side plate, leakage flow, reverse flow from the outlet volume produced by pressure difference between pumping chamber and outlet volume when the pumping chamber connected with the outlet volume. In this paper, we measured the pressure variation of a pumping chamber, reaction force on a cam ring, the mathematical model for analyzing the pressure ripples which included vane detachment and fluid inertia effects in notch area has been presented, and was applied to predict the level and the wave form of the pressure ripples according to operating conditions.

Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process (건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • Currently graphite is used as an anode active material for lithium ion battery. However, since the maximum theoretical capacity of graphite is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of next generation high capacity and high energy density lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is about 10 times higher than the maximum theoretical capacity of graphite. However, since the volume expansion rate is almost 400%, the irreversible capacity increases as the cycle progresses and the discharge capacity relative to the charge is remarkably reduced. In order to solve these problems, it is possible to control the particle size of the Si anode active material to reduce the mechanical stress and the volume change of the reaction phase, thereby improving the cycle characteristics. Therefore, in order to minimize the decrease of the charge / discharge capacity according to the volume expansion rate of the Si particles, the improvement of the cycle characteristics was carried out by pulverizing Si by a dry method with excellent processing time and cost. In this paper, Si is controlled to nano size using vibrating mill and the physicochemical and electrochemical characteristics of the material are measured according to experimental variables.

Discharge Rate Prediction of a new Sandbypassing System in a Field (새로운 샌드바이패싱 시스템의 토출율 예측을 위한 현장실험 연구)

  • Kweon, Hyuck-Min;Park, Sang-Shin;Kwon, Oh-Kyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.4
    • /
    • pp.292-303
    • /
    • 2011
  • A new type of sand bypassing system is proposed for recovering the eroded beach in this study. This system provides an added methodology to the soft defence which is main recovery method for the coastal shore protection in the world. The study proposes a conceptional design and manufacturing procedure for the relatively small size machine of sand bypassing. In order to get the discharging volume information, the power capacity of the system is tested in the field. The discharge rate of the new system shows up to the expected maximum of 618 ton/hr which is 9.6% lower than that by theoretical calculation. It gives a resonable agreement in this system when the flow is assumed to be of the high density. In this study, the delivering volume of sand is estimated according to the discharge rate. The combination of 300 mm(12 inch) intake and 250 mm(10 inch) discharge pipe line has the pumping capacity of $103\;m^3/hr$ which is nearly the same as that of South Lake Worth Inlet sand bypassing system, Florida, U.S.A.. The proposed system added the mobility to its merit. The unit price of Florida's sand bypassing is $$8~9/m^3$ (US). The system would be economically suitable for small volume of sand because no additional equipment is necessary for the intake. The diesel fuel of 25~30 l/hr was consumed during the system operation. The multiple working system would be the next investigation target for large volume of sand.

Performance of Pressure Swirl Injector using Screw Type Swirler for Combustor in a Supersonic Engine (Part I. Performance of Control Group Injector) (초음속 엔진용 연소기를 위한 스크류형 선회기를 장착한 압력선회형 인젝터의 성능(Part I. 기준 인젝터의 성능))

  • Hwang, Yong-Seok;Lee, Jang-Woo;Lee, Sang-Youn;Jeong, Hae-Seung;Yoon, Hyun-Gull
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.258-263
    • /
    • 2008
  • Performance of injector equiped with screw type swirler which is suitable for supersonic cruise engine combustor was investigated using theoretical, numerical, and experimental methods. Based on discharge coefficient and spray angle which represent the performance of injectors, the geometrical parameters which affect these performance parameters were defined, control group injectors were designed, and variation of performance parameters according to the geometrical parameters were examined. Within the defined range, measured value of performance of injectors was smaller than result of theoretical prediction, and prediction result from numerical simulation using VOF method agreed with the result of experiments very well. The viscous barrier was not observed, and minimum discharge coefficient and maximum spray angle, 0.05 and 104 respectively, was obtained for this type of injector.

Cross-linkable Waterborne Polyurethane based on Castor Oil as an Efficient Binder for Silicon Anodes (실리콘 음극용 효과적인 바인더로서 가교결합이 가능한 캐스터 오일 기반의 수분산 폴리우레탄)

  • Lee, Yong Hun;Kim, Eunji;Lee, Jin Hong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.607-612
    • /
    • 2021
  • Silicon (Si) is one of the promising active materials to replace the widely used graphite because of its low electrochemical potential and high theoretical capacity. However, Si anodes still face in problems with the huge volume expansion and continuous decomposition of the electrolyte during repeated charge and discharge processes. To address these issues, a cross-linkable waterborne polyurethane (CWPU) based on a bio-oil, castor oil, was prepared and reacted with Tris(2,3-epoxypropyl) isocyanurate (TGIC) linkers, resulting in the formation of a mechanically robust 3D network structure. Si anodes fabricated with the CWPU-TGIC exhibited stable cycling performances and excellent discharge capacities. The results revealed that the CWPU-TGIC binder efficiently accommodates the large volume change for Si anode during charge and discharge cycles. Overall, the eco-friendly binder shows great promise in improving the electrochemical performances of Si anodes.