DOI QR코드

DOI QR Code

Effect of Auxetic Structure of PVdF on Tin Anode Stability for Na-ion Batteries

소듐 이온전지용 주석 음극의 안정화를 위한 PVdF 옥세틱 구조의 영향

  • Park, Jinsoo (Department of Advanced Aerospace Materials Engineering, Kyungwoon University)
  • 박진수 (경운대학교 항공신소재공학과)
  • Received : 2018.12.03
  • Accepted : 2018.12.24
  • Published : 2018.12.28

Abstract

This study investigates the viability of using a Na-ion battery with a tin(Sn) anode to mitigate the vulnerability caused by volume changes during discharge and charge cycling. In general, the volume changes of carbon material do not cause any instability during intercalation into its layer structure. Sn has a high theoretical capacity of $847mAh\;g^{-1}$. However, it expands dramatically in the discharge process by alloying Na-Sn, placing the electrode under massive internal stress, and particularly straining the binder over the elastic limit. The repeating strain results in loss of active material and its electric contact, as well as capacity decrease. This paper expands the scope of fabrication of Na-ion batteries with Sn by fabricating the binder as an auxetic structure with a unique feature: a negative Poisson ratio (NPR), which increases the resistance to internal stress in the Na-Sn alloying/de-alloying processes. Electrochemical tests and micrograph images of auxetic and common binders are used to compare dimensional and structural differences. Results show that the capacity of an auxetic-structured Sn electrode is much larger than that of a Sn electrode with a common-structured binder. Furthermore, using an auxetic structured Sn electrode, stability in discharge and charge cycling is obtained.

Keywords

References

  1. J. M. Tarascon and M. Armand: Nature, 414 (2001) 359. https://doi.org/10.1038/35104644
  2. N. Nitta, F. Wu, J. T. Lee and G. Yushin: Mater. Today, 18 (2015) 252. https://doi.org/10.1016/j.mattod.2014.10.040
  3. M. R. Palacin: Chem. Soc. Rev., 38 (2009) 2565. https://doi.org/10.1039/b820555h
  4. P. W. Gruber, P. A. Medina, G. A. Keoleian, S. E. Kesler, M. P. Everson and T. J. Wallington: J. Ind. Ecol., 15 (2011) 760. https://doi.org/10.1111/j.1530-9290.2011.00359.x
  5. J. Speirs, M. Contestabile, Y. Houari and R. Gross: Renewable Sustainable Energy Rev., 35 (2014) 183. https://doi.org/10.1016/j.rser.2014.04.018
  6. Y. Liu, N. Zhang, L. Jiao, Z. Tao and J. Chen: Adv. Funct. Mater., 25 (2015) 214. https://doi.org/10.1002/adfm.201402943
  7. M. M. Doeff, Y. Ma, S. J. Visco and L. C. D. Jonghe: J. Electrochem. Soc., 140 (1993) L169. https://doi.org/10.1149/1.2221153
  8. D.A. Stevens and J.R. Dahn: J. Electrochem. Soc., 147 (2000) 1271. https://doi.org/10.1149/1.1393348
  9. S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh and K. Fujiwara: Adv. Funct. Mater., 21 (2011) 3859. https://doi.org/10.1002/adfm.201100854
  10. V. L. Chevrier and G. Ceder: J. Electrochem. Soc., 158 (2011) A1011. https://doi.org/10.1149/1.3607983
  11. L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie and J. Liu: Chem. Commun., 48 (2012) 3321. https://doi.org/10.1039/c2cc17129e
  12. J. Qian, Y. Chen, L. Wu, Y. Cao, X. Ai and H. Yang: Chem. Commun., 48 (2012) 7070. https://doi.org/10.1039/c2cc32730a
  13. L. Baggetto, J. K. Keum, J. F. Browning and G. M. Veith: Electrochem. Commun., 34 (2013) 41. https://doi.org/10.1016/j.elecom.2013.05.025
  14. S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata and S. Kuze: Electrochem. Commun., 21 (2012) 65. https://doi.org/10.1016/j.elecom.2012.05.017
  15. Y. Liu, Y. Xu, Y. Zhu, J. N. Culver, C. A. Lundgren, K. Xu and C. Wang: ACS Nano, 7 (2013) 3627. https://doi.org/10.1021/nn400601y
  16. J. W. Wang, X. H. Liu, S. X. Mao and J. Y. Huang: Nano Lett., 12 (2012) 5897. https://doi.org/10.1021/nl303305c
  17. S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata and S. Kuze: Electrochem. Commun., 21 (2012) 65. https://doi.org/10.1016/j.elecom.2012.05.017
  18. J. W. Wang, X. H. Liu, S. X. Mao and J. Y. Huang: Nano Lett., 12 (2012) 5897. https://doi.org/10.1021/nl303305c
  19. X. Han, Y. Liu, Z. Jia, Y. C. Chen, J. Wan, N. Weadock, K. J. Gaskell, T. Li and L. Hu: Nano Lett., 14 (2013) 139.
  20. Y. M. Lin, P. R. Abel, A. Gupta, J. B. Goodenough, A. Heller and C. B. Mullins: ACS Appl. Mater. Interfaces, 5 (2013) 8273. https://doi.org/10.1021/am4023994
  21. M. K. Datta, R. Epur, P. Saha, K. Kadakia, S.K. Park and P.N. Kumta: J. Power Sources, 225 (2013) 316. https://doi.org/10.1016/j.jpowsour.2012.10.014
  22. K. Dai, H. Zhao, Z. Wang, X. Song, V. Battaglia and G. Liu: J. Power Sources, 263 (2014) 276. https://doi.org/10.1016/j.jpowsour.2014.04.012
  23. K. E. Evans and A. Alderson: Adv. Mater., 12 (2000) 617. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
  24. B. D. Caddock and K. E. Evans: J. Phys. D, Appl. Phys., 22 (1989) 1877. https://doi.org/10.1088/0022-3727/22/12/012
  25. A. Yeganeh-Haeri, D. J. Weidner and J. B. Parise: Science, 257 (1992) 650. https://doi.org/10.1126/science.257.5070.650
  26. M. Siddorn, F. Coudert, K. E. Evans and A. Marmier: Phys. Chem. Chem. Phys., 17 (2015) 17927. https://doi.org/10.1039/C5CP01168J
  27. A. Alderson, J. Rasburn, S. Ameer-Beg, P. G. Mullarkey, W. Perrie and K. E. Evans: Ind. Eng. Chem. Res., 39 (2000) 654. https://doi.org/10.1021/ie990572w
  28. I. A. Aksay, J. T. Groves, S. M. Gruner, P. C. Y. Lee, R. K. Prud'-homme, W. H. Shih, S. Torquato and G. M. Whitesides: Proc. SPIE Int. Soc. Opt. Eng., 2716 (1996) 280.
  29. A. Alderson: Chem. Ind., 10 (1999) 384.
  30. K. L. Alderson, A. Alderson, G. Smart, V. R. Simkins and P. J. Davies: Plast. Rubber Compos., 31 (2002) 344. https://doi.org/10.1179/146580102225006495
  31. L. Yang, O. Harrysson, H. West and D. Cormier: Acta Mater., 60 (2012) 3370. https://doi.org/10.1016/j.actamat.2012.03.015
  32. Q. Shi, M. Yu, X. Zhou, Y. Yan and C. Wan: J. Power Sources, 103 (2002) 286. https://doi.org/10.1016/S0378-7753(01)00868-0
  33. W. Pu, X. He, L. Wang, C. Jiang and C. Wan: J. Membr. Sci., 272 (2006) 11. https://doi.org/10.1016/j.memsci.2005.12.038
  34. L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie and J. Liu: Chem. Commun., 48 (2012) 3321. https://doi.org/10.1039/c2cc17129e