DOI QR코드

DOI QR Code

Recent Development in Fabrication and Control of Layered-Double Hydroxide Nanostructures

층상 이중 수산화물 나노물질의 성장 제어기술 연구동향

  • Jeon, Chan-Woo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 전찬우 (서울과학기술대학교 신소재공학과) ;
  • 박일규 (서울과학기술대학교 신소재공학과)
  • Received : 2018.11.27
  • Accepted : 2018.12.10
  • Published : 2018.12.28

Abstract

Layered-double hydroxide (LDH)-based nanostructures offer the two-fold advantage of being active catalysts with incredibly large specific surface areas. As such, they have been studied extensively over the last decade and applied in roles as diverse as light source, catalyst, energy storage mechanism, absorber, and anion exchanger. They exhibit a unique lamellar structure consisting of a wide variety of combinations of metal cations and various anions, which determine their physical and chemical performances, and make them a popular research topic. Many reviewed papers deal with these unique properties, synthetic methods, and applications. Most of them, however, are focused on the form-factor of nanopowder, as well as on the control of morphologies via one-step synthetic methods. LDH nanostructures need to be easy to control and fabricate on rigid substrates such as metals, semiconductors, oxides, and insulators, to facilitate more viable applications of these nanostructures to various solid-state devices. In this review, we explore ways to grow and control the various LDH nanostructures on rigid substrates.

Keywords

References

  1. L. Mohapatra and K. Parida: J. Mater. Chem. A, 4 (2016) 10744. https://doi.org/10.1039/C6TA01668E
  2. K. Yan, Y. Liu, Y. Lu, J. Chai and L. Sun: Catal. Sci. Technol., 7 (2017) 1622. https://doi.org/10.1039/C7CY00274B
  3. Q. Wang and D. O'Hare: Chem. Rev., 112 (2012) 4124. https://doi.org/10.1021/cr200434v
  4. S. M. Xu, T. Pan, Y. B. Dou, H. Yan, S. T. Zhang, F. Y. Ning, W. Y. Shi and M. Wei: J. Phys. Chem. C, 119 (2015) 18823. https://doi.org/10.1021/acs.jpcc.5b01819
  5. D. K. Cho and I. K. Park: Ceram. Int., 44 (2018) 8556. https://doi.org/10.1016/j.ceramint.2018.02.060
  6. J. Yu, Q. Wang, D. O'Hare and L. Sun: Chem. Soc. Rev., 46 (2017) 5950. https://doi.org/10.1039/C7CS00318H
  7. Z. Meng, Y. Zhang, Q. Zhang, X. Chen, L. Liu, S. Komarneni and F. Lv: Appl. Surf. Sci., 396 (2017) 799. https://doi.org/10.1016/j.apsusc.2016.11.032
  8. N. Baig and M. Sajid: Trends Environ. Anal. Chem., 16 (2017) 1. https://doi.org/10.1016/j.teac.2017.10.003
  9. D. K. Cho, C. W. Jeon and I. K. Park: J. Alloys Compd., 737 (2018) 725. https://doi.org/10.1016/j.jallcom.2017.12.163
  10. Y. Sun, J. Zhou,W. Cai, R. Zhao and J. Yuan: Appl. Surf. Sci., 349 (2015) 897. https://doi.org/10.1016/j.apsusc.2015.05.041
  11. Z. P. Xu, G. S. Stevenson, C. Q. Lu, G. Q.(Max) Lu, P. F. Bartlett and P. P. Gray: J. Am. Chem. Soc., 128 (2006) 36 https://doi.org/10.1021/ja056652a
  12. W. Liu, J. Bao, M. Guan, Y. Zhao, J. Lian, J. Qiu, L. Xu, Y. Huang, J. Qian and H. Li: Dalton Trans., 46 (2017) 8372. https://doi.org/10.1039/C7DT00906B
  13. B. Wang, Q. Liu, Z. Qian, X. Zhang, J. Wang, Z. Li, H. Yan, Z. Gao, F. Zhao and L. Liu: J. Power Sources, 246 (2014) 747. https://doi.org/10.1016/j.jpowsour.2013.08.035
  14. F. Zhang, L. Guo, S. Xu, and R. Zhang: Langmuir, 31 (2015) 6704. https://doi.org/10.1021/acs.langmuir.5b00619
  15. S. H. Baek, G. H. Nam and I. K. Park: RSC Adv., 5 (2015) 59823. https://doi.org/10.1039/C5RA10374F
  16. S. H. Baek and I. K Park: J. Ceram. Process. Res., 18 (2017) 584.
  17. D. K. Cho, S. S. Lee, J. S. Lim, S. H. Baek and I. K. Park: Ceram. Int., 43 (2017) 9686. https://doi.org/10.1016/j.ceramint.2017.04.142