• Title/Summary/Keyword: theoretical analyses

Search Result 838, Processing Time 0.032 seconds

The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation

  • Zhu, Xiaohua;Liu, Weiji
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.195-204
    • /
    • 2018
  • Based on theories of rock mechanics, rock fragmentation, mechanics of elasto-plasticity, and energy dissipation etc., a method is presented for evaluating the rock fragmentation efficiency by using plastic energy dissipation ratio as an index. Using the presented method, the fragmentation efficiency of rocks with different strengths (corresponding to soft, intermediately hard and hard ones) under indentation is analyzed and compared. The theoretical and numerical simulation analyses are then combined with experimental results to systematically reveal the fragmentation mechanism of rocks under indentation of indenter. The results indicate that the fragmentation efficiency of rocks is higher when the plastic energy dissipation ratio is lower, and hence the drilling efficiency is higher. For the rocks with higher hardness and brittleness, the plastic energy dissipation ratio of the rocks at crush is lower. For rocks with lower hardness and brittleness (such as sandstone), most of the work done by the indenter to the rocks is transferred to the elastic and plastic energy of the rocks. However, most of such work is transferred to the elastic energy when the hardness and the brittleness of the rocks are higher. The plastic deformation is small and little energy is dissipated for brittle crush, and the elastic energy is mainly transferred to the kinetic energy of the rock fragment. The plastic energy ratio is proved to produce more accurate assessment on the fragmentation efficiency of rocks, and the presented method can provide a theoretical basis for the optimization of drill bit and selection of well drilling as well as for the selection of the rock fragmentation ways.

A Study on Demand-oriented Model for Agricultural Development Cooperation : The Analysis on Agricultural Development Phase of African Countries (농업발전단계 분석을 통한 아프리카 수원국 중심의 국제농업개발협력 방안 연구)

  • Hwang, Jae-Hee;Kim, Sa-Rang;Lee, Seong-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.33-46
    • /
    • 2013
  • The present study aims to provide an analytical framework for achieving aid and development effectiveness of agricultural cooperation with a demand-oriented perspective. This paper pays particular attention to categorize the stages of agricultural development of African recipients to identify demands for agricultural aid of the categorized groups. To do so, first of all, it establishes theoretical background to apply the demand-oriented concept and utilize the phase of agricultural development as an alternative for aid and development effectiveness. On the basis of the theoretical robustness, it conducts a series of analyses to categorize the African recipients by the development stages, incorporating factor analysis, cluster analysis and comparison between the present-future agricultural development levels. The findings propose analysis indicators for phase of agricultural development and clustered results including 18 countries of KAFACI members and priority countries in Africa. In addition to the practical application of the results, the methodological flow can be used as steps for sketching a future roadmap to construct the demand-oriented ODA(Official Development Assistance) plan. This paper also offers implications regarding ODA strategy of Korea in response to the phase of agricultural development and the aid demands.

A Theoretical Study on the Characteristics of Fire Resistance for the Concrete Filled Tubular Steel Columns (콘크리트충전 강관기둥의 내화특성에 관한 이론적 연구)

  • Chung, Kyung Soo;Choi, Sung Mo;Kim, Dong Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.649-658
    • /
    • 1997
  • When steel tube as a column is filled with concrete, it is common that the load-bearing capacities of CFST(Concrete Filled Steel Tube) column are increased substantially, And the CFST column can obtain a capacity of fire resistance without any additional detail on the surface of the steel tube for fire protection. In order to clarify the behavior of CFST column during fire occurrence, a theoretical study is performed, that is, a thermal analysis is used to find temperature gradient dependent on the time on the steel tube and the infilled concrete. N-M (axial force-moment) interaction curves are summarized under the consideration for time dependent variation. The material properties of concrete and steel in accordance with a temperature variation are referred to the existing general data. Thermal transient analyses are performed by finite element method through ANSYS and then these results are verified by comparing with the existing test results. On the basis of analytical results, load-carrying capacities (N-M interaction curves) are calculated by numerical analysis method.

  • PDF

A Numerical Study on the Influence of the Shaft Geometry on the Stack Effect (수직통로의 형상이 연돌효과에 미치는 영향에 관한 수치해석 연구)

  • Jeon, Heung-Kyun;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.25 no.4
    • /
    • pp.74-81
    • /
    • 2011
  • The numerical analyses for three different shafts in geometry of high buildings were carried out by using computational fluid dynamics model (FDS ver.5.3) for the calculation of the pressure difference and the location of the neutral plane and the visualization of stack effect. At 10 seconds of stack effect, the pressure difference of stack effect in the elevator shaft (79.3 Pa) almost corresponded to the theoretical value (78 Pa). At 300 seconds of stack effect, all the neutral planes of three cases were located about 49 m above floor, where was 5 m higher than the theoretical value. The maximum pressure difference between upper and lower position of shaft decreased with increasing of the geometrical complexity of shaft. This study showed that there was the difference of the stack effects among the geometries of shafts with the visualization of stack effect.

Tension Crack and Lateral Pressure on Gravity Wall Backfilled by Cohesive Soil : Undrained Analysis (점성토로 뒤채움된 중력식옹벽에서의 인장균열 및 수평토압 : 비배수 해석)

  • 정성교;김형수
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.135-148
    • /
    • 1997
  • Coulomb's theory has been usually used in practice to obtain lateral earth pressure against retaining wall. Such theory is based in the assumption that the lateral pressure is a tai angular distribution, since the point of applying the lateral thrust cannot be obtained by using it. However, the results of laboratory and field tests showed that the lateral pressure was not a triangular but a nonlinear distribution. To overcome the drawback of the Coulomb's theory, the different theoretical approaches(Handy, 1985. Kingsley, 1989 : Kellogg, 1993, Chung et at,1993, 1996a) were performed for gravity wall backfilled by cohesionless soil. On the other hand, for retaining wall backfilled by ,cohesive soil, theoretical analyses were carried out only on the basis of the Rankine's or Coulomb's concepts, but the equations showed different results. Here was newly derived the equations of lateral pressures under undrained condition against gravity wall backfilled by cohesive soil. They were based on the Coulomb's wedge, adopted the arching concept. Some of the equations were derived by neglecting tension crack, while the others by considering it. Comparative results for applying different examples showed that the equation considering tension crack might be reasonable.

  • PDF

Systematic Study on the Hull Form Design and the Resistance Predict Displacement Type Super High - Speed Ships (배수량형 초고속선의 선형설계 및 저항특성 추정을 위한 체계적 연구)

  • Min, Keh-Sik;Kang, Seon-Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.32-47
    • /
    • 1996
  • Systematic theoretical arm experimental studies have been performed to establish the methods of the hull form design, the optimum dimension selection and the resistance estimation for the displacement type super high-speed ships. In this study, theoretical hull form design method of the displacement type super high-speed ships has been developed first by the minimum resistance theory and the sectionally-varying hull form equation. Utilizing the established hull form design method, sixty(60) series hull forms have been prepared according to the systematic variations of the important design variables, and model tests were conducted for the sixty(60) series ship models. Finally, regression analyses have been performed for the results of model tests. It is considered that this is the first systematic and multi-purpose study in the world for the super high-speed ships. The study has been completed very successfully. The prepared computer program is now being actively utilized as an efficient tool for the design of the displacement type super high-speed ships.

  • PDF

A Numerical Study on the Stack Effect and the Neutral Plane of a Single Simplified Shaft (단일 단순수직통로의 연돌효과와 중성대에 관한 수치해석 연구)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.143-152
    • /
    • 2009
  • The numerical analyses for each single simplified shaft with three type openings were carried out by using computational fluid dynamics model for the calculation of the pressure difference and the location of the neutral plane and the visualization of stack effect. As the height of shaft heighten, the pressure difference of stack effect is much deviated against the theoretical value. For the Type A models shorter than 30 m height of shaft and the Type B models longer than 30m, the simulation results for the location of the neutral plane are well agreed to the theoretical values with 5% less deviations just after the beginning of simulation (t = 10s). For the Type B models longer than 30m with multiple openings, therefore, it is possible to calculate the location of the neutral plane by using a CFD model. The phenomenon of the air flow of stack effect can be easily understood with the visualization of stack effect.

Numerical Study on Mode Transition in a Scramjet Engine (스크램제트 엔진에서의 모드 천이에 관한 수치해석 연구)

  • Ha, Jeong Ho;Das, Rajarshi;Ladeinde, Foluso;Kim, Tae Ho;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.21-31
    • /
    • 2017
  • In the present study, theoretical and numerical analyses have been carried out to investigate the detailed flow characteristics during the mode transition. The theoretical analysis rearranged the knowledge of gasdynamics and the previous studies, and the numerical analysis has conducted to solve the 2D unsteady compressible Navier-Stokes equations with a fully implicit finite volume scheme. To validate the numerical analysis, the experiment was compared with it. The total temperature at the inlet of isolator and the hydrogen fuel equivalent ratio were changed to investigate their effects on the mode transition phenomenon. As the results, the numerical analysis reproduced well the experiment qualitatively, the increment in the hydrogen fuel equivalent ratio induced the scram-mode to ram-mode transition which is discontinuous with a non-allowable region, and the variation in the total temperature changed the boundary of the mode transition.

A Study on Body Painting according to Physical Types (신체적 유형에 따른 바디페인팅 연구)

  • Park, Jeongshin
    • Journal of Fashion Business
    • /
    • v.19 no.5
    • /
    • pp.175-187
    • /
    • 2015
  • Body painting according to physical types is a method to express the body as it exists in nature or as an active element of nature. There is a need to research physical formation that applies the trend of contemporary naturalism to the types of nature art by emphasizing the artistic value of body painting with natural environmental overtones. Importantly, body painting according to physical types attempts an intact reproduction of natural objects and the reflection of the beauty of natural objects in body painting. Thus, the purpose of this study was to analyze body painting according to physical types based on the types of nature art. The methodology of the study included theoretical and empirical review. Theoretical review examined the characteristics of physical formation in nature art and relevant nature art works and body painting of physical types through previous research and literature. The empirical review applied analyses to works extracted from web sites of body painting. The study included physical type cases extracted from body painting works from 2005 to 2015 in foreign web sites(www.ilovebodyart.com and www.angel cakebodyart.com). Body painting works were based on the characteristics of physical types. As a result, the body painting of physical types based on nature art is as follows. First, organic continuity with nature art through the artists'thoughts and beliefs. Second, the specificity of place that respects the natural phenomenon itself. Third, the creative diversity of formative shapes for the body. Fourth, the social implications of body painting with human empathy. Fifth, immediacy to embody the artistic will of the artist. Finally, the application of physical types according to affinity with nature, as well as an independent artistic entity.

Irregular Wave Model for Youngil Bay (영일만의 불규칙파 모형)

  • 정신택;채장원;이동영
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.146-150
    • /
    • 1996
  • The waves are most important dynamical factors for the analyses of structural stability and topographical changes on coastal engineering field. However, wind-generated waves are very irregular in shape and transformed through refraction, diffraction and shoaling when they propagate into shallow water where bottom topography and water depth vary significantly. Recently, Vincent and Briggs (1989) reported hydraulic model experiments for the transformation of monochromatic and directionally-spread irregular waves passing over a submerged elliptical mound. They concluded that for the case of combined refraction-diffraction of waves by a shoal, the propagation characteristics of the irregular and equivalent regular wave conditions can be vastly different. On the irregular wave transformation have been made theoretical and numerical studies for several years. Although theoretical and laboratory studies on wave transformation have progressed considerably, field measurement and comparison of numerical results with related theories are still necessary for the prediction of the phenomena in reality. In this study, field measurement of both incident and transformed waves in Youngil Bay were made using various kinds of equipments, and numerical computations were made on the transformed frequency spectra of large waves propagating over the shoal using Chae and Jeong's (1992) elliptic model. It is shown that this model results agree very well with field data, and thus the applicability of the model is now validated.

  • PDF