• 제목/요약/키워드: the value of mathematics

검색결과 1,252건 처리시간 0.034초

SOLVABILITY FOR THE PARABOLIC PROBLEM WITH JUMPING NONLINEARITY CROSSING NO EIGENVALUES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권4호
    • /
    • pp.545-551
    • /
    • 2008
  • We investigate the multiple solutions for a parabolic boundary value problem with jumping nonlinearity crossing no eigenvalues. We show the existence of the unique solution of the parabolic problem with Dirichlet boundary condition and periodic condition when jumping nonlinearity does not cross eigenvalues of the Laplace operator $-{\Delta}$. We prove this result by investigating the Lipschitz constant of the inverse compact operator of $D_t-{\Delta}$ and applying the contraction mapping principle.

  • PDF

THREE-STEP MEAN VALUE ITERATIVE SCHEME FOR VARIATIONAL INCLUSIONS AND NONEXPANSIVE MAPPINGS

  • Zhang, Fang;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.557-566
    • /
    • 2009
  • In this paper, we present the three-step mean value iterative scheme and prove that the iteration sequence converge strongly to a common element of the set of fixed points of a nonexpansive mappings and the set of the solutions of the variational inclusions under some mild conditions. The results presented in this paper extend, generalize and improve the results of Noor and Huang and some others.

  • PDF

THOMAS ALGORITHMS FOR SYSTEMS OF FOURTH-ORDER FINITE DIFFERENCE METHODS

  • Bak, Soyoon;Kim, Philsu;Park, Sangbeom
    • 대한수학회지
    • /
    • 제59권5호
    • /
    • pp.891-909
    • /
    • 2022
  • The main objective of this paper is to develop a concrete inverse formula of the system induced by the fourth-order finite difference method for two-point boundary value problems with Robin boundary conditions. This inverse formula facilitates to make a fast algorithm for solving the problems. Our numerical results show the efficiency and accuracy of the proposed method, which is implemented by the Thomas algorithm.

VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

  • Mohyud-Din, Syed Tauseef;Noor, Muhammad Aslam;Waheed, Asif
    • 대한수학회논문집
    • /
    • 제24권4호
    • /
    • pp.605-615
    • /
    • 2009
  • In this paper, we develop a reliable algorithm which is called the variation of parameters method for solving sixth-order boundary value problems. The proposed technique is quite efficient and is practically well suited for use in these problems. The suggested iterative scheme finds the solution without any perturbation, discritization, linearization or restrictive assumptions. Moreover, the method is free from the identification of Lagrange multipliers. The fact that the proposed technique solves nonlinear problems without using the Adomian's polynomials can be considered as a clear advantage of this technique over the decomposition method. Several examples are given to verify the reliability and efficiency of the proposed method. Comparisons are made to reconfirm the efficiency and accuracy of the suggested technique.

개념연결표의 활용이 예비교사들의 수학 학습에 미치는 영향에 관한 연구 (A Study on the effects of the use of the Link Sheet in pre-service mathematics teachers' mathematics learning)

  • 한혜숙
    • 한국학교수학회논문집
    • /
    • 제15권2호
    • /
    • pp.259-279
    • /
    • 2012
  • 본 연구의 목적은 개념연결표의 활용이 예비교사들의 수학 학습에 미치는 영향에 대해서 조사하는 것이다. 본 연구는 25명의 예비교사들을 대상으로 미적분학 강좌 시간을 활용하여 한 학기 동안 수행되었다. 연구에 참여한 예비교사들을 대상으로 실시한 설문조사 및 면담 결과에 의하면 개념연결표의 활용은 여러 가지 측면에서 예비교사들에게 긍정적인 영향을 미친 것으로 나타났다. 개념연결표의 활용은 예비교사들의 수학적 개념에 대한 이해와 수학적 의사소통능력을 발달시키는데 도움이 되었으며 수학의 유용성이나 가치 인식 및 자기주도적이고 적극적인 수업 참여를 유도하는데 효과적인 것으로 나타났다.

  • PDF

REGULARITY OF THE SCHRÖDINGER EQUATION FOR A CAUCHY-EULER TYPE OPERATOR

  • CHO, HONG RAE;LEE, HAN-WOOL;CHO, EUNSUNG
    • East Asian mathematical journal
    • /
    • 제35권1호
    • /
    • pp.1-7
    • /
    • 2019
  • We consider the initial value problem of the Schrodinger equation for an interesting Cauchy-Euler type operator ${\mathfrak{R}}$ on ${\mathbb{C}}^n$ that is an analogue of the harmonic oscillator in ${\mathbb{R}}^n$. We get an appropriate $L^1-L^{\infty}$ dispersive estimate for the solution of the initial value problem.

REDUCTION METHOD APPLIED TO THE NONLINEAR BIHARMONIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제18권1호
    • /
    • pp.87-96
    • /
    • 2010
  • We consider the semilinear biharmonic equation with Dirichlet boundary condition. We give a theorem that there exist at least three nontrivial solutions for the semilinear biharmonic boundary value problem. We show this result by using the critical point theory, the finite dimensional reduction method and the shape of the graph of the corresponding functional on the finite reduction subspace.

EXISTENCE RESULTS FOR BOUNDARY VALUE PROBLEMS OF VOLTERRA-FREDHOLM SYSTEM INVOLVING CAPUTO DERIVATIVE

  • Shakir M. Atshan;Ahmed A. Hamoud
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.545-558
    • /
    • 2024
  • In this study, a class of nonlinear boundary fractional Caputo Volterra-Fredholm integro-differential equations (CV-FIDEs) is taken into account. Under specific assumptions about the available data, we firstly demonstrate the existence and uniqueness features of the solution. The Gronwall's inequality, a adequate singular Hölder's inequality, and the fixed point theorem using an a priori estimate procedure. Finally, a case study is provided to highlight the findings.

A BIFURCATION PROBLEM FOR THE BIHARMONIC OPERATOR

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • 제20권2호
    • /
    • pp.263-271
    • /
    • 2012
  • We investigate the number of the solutions for the biharmonic boundary value problem with a variable coefficient nonlinear term. We get a theorem which shows the existence of $m$ weak solutions for the biharmonic problem with variable coefficient. We obtain this result by using the critical point theory induced from the invariant function and invariant linear subspace.