Some children can construct a basic concept of addition and subtraction during the preschool years. Children start to experience mathematics via numbers and their of operations and contact with various contexts of addition and subtraction. In special, word problems reflect mathematics which is appliable to real life. In this paper, I analyse the types of word problems in text book and its students' responses. First, I analyse the types of addition word problems which consist of change add-into situations and part-part-whole situations. Second, I analyse the types of subtraction word problems which consist of change take-away situations, compare situations and equalize situations. Third, I analyse the students' responses by the types of word problems in addition and subtraction. And 115 2nd grade elementary school students participated in this survey. The following results have been drawn from this study. First, the proposition of word problems of part-part-whole situations is higher than that of change add-into situations and the proposition of word problems of take-away situations is higher than that of compare situations and equalize situations. According to the analysis about students' responses, It is no difference between change add-into situations and part-part-whole situations. But the proposition of word problems of take-away situations is higher than that of compare situations and equalize situations. This results from word problems which contain unnecessary information in problem. So, we have to present the various word problems to students.
In this paper, we analyze strategies and error patterns in solving word problems of linear equation for middle school students. From a test conducted to the sampled 106 second grade middle school students, we obtain the following results: (1)The most difficult types of word problem are velosity and density related problems. The second one is length related problems and the easist one is number related problems. (2)Regardless of the types of word problem, the most familiar strategy is the constructing algebraic equations. However, the most successful strategy is the trial and error. (3)Most likely error patterns are the use of inadequate formulas and wrong trial and errors. Based on these results, a teaching program with various schema is developed and shown to be effective for mid level students in classroom.
The purpose of this study was to examine what errors students made in solving word problems with figures and to compare the problem-solving abilities of boys and girls for each type of word problems with figures. It's basically meant to provide information on effective teaching-learning methods about world problems with figures that were given the greatest weight among different sorts of word problems. The findings of the study were as fellows: First, there was no difference between the boys and girls in the types of error they made. Both groups made the most errors due to a poor understanding of sentences, and they made the least errors of making the wrong expression. And the students who gave no answers outnumbered those who made errors. Second, as for problem-solving ability, the boys outperformed the girls in problem solving except variable problems. There was the greatest gap between the two in solving combining problems. Third, they made the average or higher achievement in solving the types of problems that were included much in the textbooks, and made the least achievement in relation to the types of problems that were handled least often in the textbooks.
The purpose of this study was to investigate the relationship between error types and Polya's problem solving process. For doing this, we selected 106 sophomore students in a middle school and gave them algebra word problem test. With this test, we analyzed the students' error types in solving algebra word problems. First, We analyzed students' errors in solving algebra word problems into the following six error types. The result showed that the rate of student's errors in each type is as follows: "misinterpreted language"(39.7%), "distorted theorem or solution"(38.2%), "technical error"(11.8%), "unverified solution"(7.4%), "misused data"(2.9%) and "logically invalid inference"(0%). Therefore, we found that the most of student's errors occur in "misinterpreted language" and "distorted theorem or solution" types. According to the analysis of the relationship between students' error types and Polya's problem-solving process, we found that students who made errors of "misinterpreted language" and "distorted theorem or solution" types had some problems in the stage of "understanding", "planning" and "looking back". Also those who made errors of "unverified solution" type showed some problems in "planing" and "looking back" steps. Finally, errors of "misused data" and "technical error" types were related in "carrying out" and "looking back" steps, respectively.
Nominalization is one of the grammatical metaphors, and it is the representation of verbal meaning through noun equivalent phrases. In mathematical word problems, texts using nominalization have both the advantage of clarifying the object to be noted in the mathematization stage, and the disadvantage of complicating sentence structure, making it difficult to understand the sentences and hindering the experience of the full steps in mathematical modelling. The purpose of this study is to analyze word problems in the textbooks from the perspective of nominalization, a linguistic element, and to derive implications in relation to students' difficulties during solving the word problems. To this end, the types of nominalization of 341 word problems from the content domain of 'Numbers and Operations' of elementary math textbooks according to the 2015 revised national curriculum were analyzed in four aspects: grade-band group, main class and unit assessment, specialized class, and mathematical expression required word problems. Based on the analysis results, didactical implications related to the linguistic expression of the mathematical word problems were derived.
The purpose of this study was to examine the students' problem solving ability according to numeric expression and the semantic types of addition and subtraction word problems. For this, a research was to analyze the addition and subtraction calculation ability, word problem solving ability of the selected $2^{nd}$ grade(118) and 3rd grade(109) students. We got the conclusion as follows: When the students took the survey to assess their ability to solve the numerical expression and the word problems, the correct answer rates of the result unknown problems was larger than those of the change unknown problems or the start unknown problems. the correct answer rates of the change add-into situation was larger than those of the part-part-whole situation in the result unknown addition word problems: they often presented in text books. And, in the cases of the result unknown subtraction word problems that often presented in text books, the correct answer rates of the change take-away situation was the largest. It seemed probably because the students frequently experienced similar situations in the textbooks. We know that the formal calculation ability of the students was a precondition for successful word problem solving, but that it was not a sufficient condition for that.
The purpose of this study is to provide informations about cause of failures when students solve word problems by analyzing what errors students made in solving word problems and types of error and features of error according to problem solving strategy. The results of this study can be summarized as follows: First, $5^{th}$ grade students preferred the expressions, estimate and verify, finding rules in order when solving word problems. But the majority of students couldn't use simplifying. Second, the types of error encountered according to the problem solving strategy on problem based learning are as follows; In the case of 'expression', the most common error when using expression was the error of question understanding. The second most common was the error of concept principle, followed by the error of solving procedure. In 'estimate and verify' strategy, there was a low proportion of errors and students understood estimate and verify well. When students use 'drawing diagram', they made errors because they misunderstood the problems, made mistakes in calculations and in transforming key-words of data into expressions. In 'making table' strategy, there were a lot of errors in question understanding because students misunderstood the relationship between information. Finally, we suggest that problem solving ability can be developed through an analysis of error types according to the problem strategy and a correct teaching about these error types.
Ball, Thames & Phelps(2008) introduced the idea of Mathematical Knowledge for Teaching(MKT) teacher. Specialized Content Knowledge(SCK) is one of six categories in MKT. SCK is a knowledge base, useful especially for math teachers to analyze errors, evaluate alternative ideas, give mathematical explanations and use mathematical representation. The purpose of this study is to analyze the elementary teacher's SCK. 29 six graders made word problems with respect to division fraction $9/10{\div}2/5$. These word problems were classified four sentence types based on Sinicrope, Mick & Kolb(2002) and then representative four sentence types were given to 10 teachers who have taught six graders. Data analysis was conducted through the teachers' evaluation of the answers(word problems) and revision of students' mathematical errors. This study showed how to know meanings of fraction division for effective teaching. Moreover, it suggested several implications to develop SCK for teaching and learning.
In this study, we classified word problems related to real life presented in elementary mathematics textbooks into five types of context problems(location, story, project, scrap, theme) suggested by Freudenthal(1991), and applied context problems to mathematics class to analyze the influence on students' mathematical belief and attitude. Also, we examined the types of context problems preferred according to academic performance and the reasons of preference within a group experiencing context problems. The results of the study are as follows. First, almost lessons in the mathematics textbook presents word problems related to real life, but the presenting method is inclined to a story type. Also, the problems with a story type are presented fragmentarily. Therefore, although these word problems are familiar to the students, they don't include contextual meanings and cannot induce enough mathematical motives and interests. Second, a lesson using context problems give a positive influence on their mathematics belief and attitude. It is also expected to give a positive influence on students' mathematics learning in the long run. Third, the preferred types of context problems and the reasons of preference are different according to the level of academic performance within the experimental group.
As it's important to understand the order of operation in the mixed calculation of natural number and perform it, mathematics curriculums and textbooks focused that students can calculate with understanding the order of operation and its principles. For attaining the implications of teaching about the mixed calculations, this study analyzed the problem solving abilities and error types of 67 elementary students and 57 pre-service teachers using questionnaire which was developed in this study and composed of numeric expressions and word problems. The conclusions drawn from this study were as follows: Students were revealed the correct rates(86.2% and 73.5%) in numeric expressions and word problems, but they were showed the paradigmatic error types-the errors of the order of operation and the composition of numeric expression from word problems. Even though the correct rates of the preservice teachers were extremely high, the result of problem solving processes required that it's needed to be interested in teaching the principles of the order of operation in the mixed calculations. In addition, subjects were revealed the problems about using parentheses and equal sign.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.