• Title/Summary/Keyword: the process of scientific thinking

Search Result 155, Processing Time 0.024 seconds

The Exploration of Thinking Characteristics of Elementary Science Gifted Children within Scientific Problem Solving (과학 문제 풀이 과정에서 나타난 초등 과학 영재들의 사고 특성 탐색)

  • Kim Eun-Jin
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.2
    • /
    • pp.179-190
    • /
    • 2006
  • While most previous studies have developed educational programs for science gifted children and have analyzed the differences between science gifted children and ordinary children using quantitative research methods, few have investigated the differences among the science gifted, especially in terms of the scientific thinking process. The present study was conducted to explore the thinking characteristics of the elementary science gifted according to the three scientific thinking process types during the scientific problem solving process. The study resulted in the collected of quantitative and qualitative data through tests and an interview with questions and scientific problems which required the use of one of the three scientific thinking processes. Ten elementary science gifted children served as interviewees. Two types as an opistemological basis for solving the problems are revealed on inductive thinking problems. Three types are on abductive thinking, and Three or Four types are on deductive. The results are expected to have an influence on the teaching and the evaluation of the elementary science gifted.

  • PDF

The Effect of Scientific Writing Program using Thinking maps on the Scientific Gifted Children's Scientific Process Skill and Creativity (Thinking maps를 활용한 과학글쓰기가 초등과학영재의 과학탐구능력 및 창의성에 미치는 효과)

  • Cho, Hye-Jin;Lee, Hyeong-Cheol;Kim, Eun-Jin
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.4 no.2
    • /
    • pp.166-176
    • /
    • 2011
  • The purpose of this study was to examine the effect of the science gifted children's Science Process Skiils and Creativity development by Scientific Writing Program using Thinking maps. To verify research problem, the subject of this study were third-grade students selected from two classes of an elementary scientific gifted students located in Ulsan : the search group is composed of twenty students who were participated in TScientific Writing Program using Thinking maps, and the other is composed of twenty students (comparison group) who were participated in teacher map based instruction in comparison group. Pro-test showed following results: First, the search group showed a significant improvement in the science process skills compared the comparison group. Second, the search group didn't showed a significant improvement in creativity compared in the comparison group. In conclusion, Scientific Writing Program using Thinking maps was more effective than teaching model using the teacher map on science process skill and creativity.

Analysis of Relationships of Scientific Communication Skills, Science Process Skills, Logical Thinking Skills, and Academic Achievement Level of Elementary School Students (초등학생의 과학적 의사소통능력과 과학 탐구능력, 논리적 사고력, 학업 성취도 수준과의 관계 분석)

  • Jeon, Seongsoo;Park, Jong-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.7
    • /
    • pp.647-655
    • /
    • 2014
  • The purpose of this study is to acquire teaching insights for improving scientific literacy by analyzing the effects of scientific communication skills, science process skills, and logical thinking skills of elementary school students on academic achievement level. The participants are 64, sixth grade elementary school students. Survey materials include the results of Scientific Communication Skill Test (SCST), Test of Science Process Skills (TSPS), Group Assessment of Logical Thinking (GALT), multiple choice test & short answer test, descriptive answer test on science, and academic achievement level test on all subjects. Based on these data, the study analyzed the relationships of science process skills, logical thinking skills, and scientific communication skills, and each category's effect on academic achievement level. Furthermore, under the assumption that scientific communication skills are affected by science process skills and logical thinking skills and directly influence the academic level, the research discovered three types of correlations as a structural model. The results show that there are considerable correlations in scientific communication skills, science process skills, and logical thinking skills. Also, these three abilities have meaningful correlations with learner's writing and descriptive question level on science curriculum and overall academic achievement level; the level of correlation differ a bit by subcategory factors. In conclusion, setting the model, science process skills and logical thinking skills influence scientific communication skill, and the skill directly influences the learner's academic level. Further analysis of the results show that scientific communication skill influences the academic achievement level of all subjects the most.

An Exploration into the Process of Scientific Thinking on the part of Young Children as seen through Constructive Play : Focusing on the Cases of the Jaemi Class (구성놀이에서 드러나는 유아들의 과학적 사고과정 탐색 : 재미반의 사례를 중심으로)

  • Baik, Eunyoung
    • Korean Journal of Child Studies
    • /
    • v.36 no.3
    • /
    • pp.139-154
    • /
    • 2015
  • The purpose of this study was to explore the process of scientific thinking as it is revealed through the cases of constructive play for young children. For this purpose, the researcher observed and interviewed six four-year-olds in the Jaemi Class while recording them with a camcorder during a free choice activity class in the morning from April 23 to June 25, 2012. The observations were analyzed in chronological order according to the changes of theories and structure as presented by the children themselves. The process of scientific thinking in constructive play for young children can be divided into presentation of naive theories, the abandonment of naive theories according to repetitive experiences and the discovery of inconsistency, the representation of alternative theories, and the abandonment of alternative theories according to repetitive experiences and the discovery of contradictions. On the basis of the results, constructive play has proved to serve a valuable educational function by inducing scientific thinking processes in children. On the basis of this finding, the researcher suggests the need to provide appropriate educational support to teachers.

The Process of Elaboration in Pre-service Science Teachers' Conceptions of Scientific Thinking (과학적 사고에 관한 예비 과학교사의 개념 정교화 과정)

  • Lee, Sun-Kyung
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.8
    • /
    • pp.937-954
    • /
    • 2008
  • Although the development of scientific thinking is one of the significant goals in science education in schools, there is a lack of empirical research on how science teachers conceptualize scientific thinking. This study explored how four pre-service secondary-level science teachers conceptualized scientific thinking and elaborated their conceptions through peer discussions. Results involved each pre-service teacher's conceptual spectrum of scientific thinking and showed the process of elaboration in their conceptions about three crucial issues in small-group or larger discussions. Three issues related to scientific thinking included everyday vs. scientific thinking, the relationship between science knowledge and scientific thinking, and the relationship between logical systems and evidence. Implications for pre-service science teacher education were discussed, and further research was suggested based on the results of this study.

Bringing Computational Thinking into Science Education

  • Park, Young-Shin;Green, James
    • Journal of the Korean earth science society
    • /
    • v.40 no.4
    • /
    • pp.340-352
    • /
    • 2019
  • The purpose of science education is scientific literacy, which is extended in its meaning in the $21^{st}$ century. Students must be equipped with the skills necessary to solve problems from the community beyond obtaining the knowledge from curiosity, which is called 'computational thinking'. In this paper, the authors tried to define computational thinking in science education from the view of scientific literacy in the $21^{st}$ century; (1) computational thinking is an explicit skill shown in the two steps of abstracting the problems and automating solutions, (2) computational thinking consists of concrete components and practices which are observable and measurable, (3) computational thinking is a catalyst for STEAM (Science, Technology, Engineering, Arts, and Mathematics) education, and (4) computational thinking is a cognitive process to be learned. More implication about the necessity of including computational thinking and its emphasis in implementing in science teaching and learning for the envisioned scientific literacy is added.

A Suggestion of Cognitive Model of Scientific Creativity (CMSC) (과학적 창의성 모델의 제안 -인지적 측면을 중심으로-)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.2
    • /
    • pp.375-386
    • /
    • 2004
  • Creative thinking alone can not lead to scientific creativity. Scientific knowledge and scientific inquiry skills are needed for scientific creativity. Focused only on cognitive aspect, I suggested a cognitive model of scientific creativity (CMSC) consisting of 3 components: thinking for scientific creativity, scientific knowledge contents, and scientific inquiry skills. Recently, many researchers have emphasized the various thinking for creativity as well as divergent thinking. Therefore, I suggested three types of creative thinking - divergent thinking, convergent thinking, and associational thinking - and discussed its rationale. Based on this model, an example of activity material for the scientific creativity was suggested. In the further research, based on CMSC, various activity types related to scientific creativity and concrete learning materials for scientific creativity will be developed.

A Case Study on the Scientifically-Gifted Students' and Average Student's Creative Science Problem Solving Processes and Skills (과학 영재 아동과 일반 아동의 창의적 과학 문제 해결 과정에 대한 사례 연구)

  • Shim, Hye-Jin;Jang, Shin-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.spc5
    • /
    • pp.532-547
    • /
    • 2007
  • The purposes of this study were to investigate the creative science problem solving (CSPS) process amongst scientifically-gifted students and average students through the qualitative think-aloud research method, and to compare the differences in their CSP, scientific knowledge, scientific process skills, creative thinking, and finally, the affective domain used in their CSPS. For the purposes of this study, two scientifically-gifted 6th grade students and one average student were selected. The results show that one gifted student with good creative thinking skills exhibited better performance in CSPS than the other gifted student, who had the highest level of scientific knowledge. In the case of the average student, in spite of her high level of factual knowledge, she had difficulty in proceeding in CSPS due to her shallow scientific knowledge along with her low level of understanding of the given problem. This study highlights the importance of considering the factors which influence successful CSPS and which can play an important role in the education of scientifically-gifted children. These factors were identified as scientific knowledge, understanding of the scientific process, creative thinking, the affective domain, and science problem solving skills.

  • PDF

Effects of the Inquiry Model on the Scientific Thinking of Preschoolers (탐구학습모형이 유아의 과학적 사고 능력에 미치는 영향)

  • Lee, Yeung Suk;Lim, Myeung Hee;Park, Ho Cheol
    • Korean Journal of Child Studies
    • /
    • v.22 no.2
    • /
    • pp.237-253
    • /
    • 2001
  • This study examined the effects of the inquiry model on children's scientific thinking ability and processing skills. The experimental classroom of a kindergarten in Seoul was assigned the inquiry model while the control classroom was assigned general scientific education (N=48). Seventeen treatment sessions were applied to the experimental group. Tests to investigate the hypotheses included the Sink and Float Test and a new instrument developed by the researchers. Findings showed that preschoolers receiving the inquiry model of instruction gained higher scores in scientific thinking ability and processing skills than the preschoolers in the classroom using the general scientific education model. In sum, this study proved the superior effect of the inquiry model in developing children's scientific skills and ability.

  • PDF

A Study on the Interior Design Process as Creativite Thinking (창조적 사고체계로서의 실내디자인 과정에 관한 연구)

  • 이선민
    • Korean Institute of Interior Design Journal
    • /
    • no.13
    • /
    • pp.60-71
    • /
    • 1997
  • A study was performed for combination active process between the academical theory and practical design process based on creative thinking process in interior desigv. At first, it was investigated the concepts and characteristics of creativity combined with creativite process of thinking, and also scientific and art characteristics on interior design to be educated together with logical and esthetical concepts required for creative thinking process. In reference with above process, it was systematically established stepwise process of interior design with creative thinking system. As a resualt, creativity in interior design could develop a unique design process combined informations about knowledge and experiences with actual acquirements by individual's experiences. So interior design could be approachable and developed with open-mind and consistently scientific methodology. Also creativity power of interior design could be solved by strategic knowledge acquired by practical experiences and problem solving capability in special branches. Like this, all design activities, including interior design, would be accomplished theoretical background and actual design process under the concepts of practical intension and use. So it would be made creative products by means of detail adapation process based on the theoretical atmosphere, therefore it'll be strongly based on the hardnessing of theoretical value and power. Theory for design process referred to environmental concepts, so including interior design, would not be terminated as for theoretical concepts but be responsible for future of well-developed design by accomplishment of various design adaption method for practical purpose and objectives.

  • PDF