• Title/Summary/Keyword: the operator's performance

Search Result 264, Processing Time 0.036 seconds

A Water-saving Irrigation Decision-making Model for Greenhouse Tomatoes based on Genetic Optimization T-S Fuzzy Neural Network

  • Chen, Zhili;Zhao, Chunjiang;Wu, Huarui;Miao, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2925-2948
    • /
    • 2019
  • In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a water-saving irrigation decision-making model based on genetic optimization T-S fuzzy neural network is proposed in this paper. The main work are as follows: Firstly, the traditional genetic algorithm is optimized by introducing the constraint operator and update operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy neural network are optimized by using the improved genetic algorithm. Finally, on the basis of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and predict the irrigation volume for greenhouse tomatoes. The performance of the genetic algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. The simulation experiment results show that compared with the TSFNN, BPNN and the GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of the irrigation volume is smaller, and the proposed method has a better prediction effect. This paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes.

Ergonomic Improvement of Operation Console for Pilot Aptitude Research Equipment (조종적성 검사/연구 장비 운용 Console의 인간공학적 개선)

  • Kim, Sungho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.42-49
    • /
    • 2018
  • Pilot Aptitude Research Equipment (PARE) is a simulator developed to measure or research pilot aptitude and train for student pilots. Design of an ergonomic PARE operation console is required to operate the equipment effectively. This study carried out five steps : (S1) operator questionnaire survey, (S2) anthropometric design formula development, (S3) usability evaluation, (S4) improvement design, and (S5) validation considering both Physical User Interface (PUI) and Graphic User Interface (GUI) of PARE operation console. The operator questionnaire surveyed needs for each PUI and GUI part of the console from two PARE actual operators. In terms of PUI, the anthropometric design formula was developed by using design variables, body dimensions, target population characteristics, and reference posture related to the PARE console. In terms of GUI, the usability evaluation was conducted by three usability testing experts with a 7-point scale (1 : very low, 4 : neutral, 7 : very high) on GUI of the PARE operation console by seven usability criteria. The improved PARE operation console was designed to reflect the optimal values of design variables calculated from design formula, the results from usability testing, and the operator's needs. The improvement effect was observed by 20 people who had experience with the PARE operation console. As a result of the validation, monitor visibility and cockpit visibility for the improved PUI design and visibility and efficiency for the improved GUI design were significantly increased by more than 90% respectively. The improved design of the PARE operation console in this study can contribute to enhance operation performance of the PARE.

Accelerated Tseng's Technique to Solve Cayley Inclusion Problem in Hilbert Spaces

  • Shamshad, Husain;Uqba, Rafat
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.673-687
    • /
    • 2022
  • In this study, we solve the Cayley inclusion problem and the fixed point problem in real Hilbert space using Tseng's technique with inertial extrapolation in order to obtain more efficient results. We provide a strong convergence theorem to approximate a common solution to the Cayley inclusion problem and the fixed point problem under some appropriate assumptions. Finally, we present a numerical example that satisfies the problem and shows the computational performance of our suggested technique.

Snippet Extraction Method using Fuzzy Implication Operator and Relevance Feedback (연관 피드백과 퍼지 함의 연산자를 이용한 스니핏 추출 방법)

  • Park, Sun;Shim, Chun-Sik;Lee, Seong-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.3
    • /
    • pp.424-431
    • /
    • 2012
  • In information retrieval, search engine provide the rank of web page and the summary of the web page information to user. Snippet is a summaries information of representing web pages. Visiting the web page by the user is affected by the snippet. User sometime visits the wrong page with respect to user intention when uses snippet. The snippet extraction method is difficult to accurate comprehending user intention. In order to solve above problem, this paper proposes a new snippet extraction method using fuzzy implication operator and relevance feedback. The proposed method uses relevance feedback to expand the use's query. The method uses the fuzzy implication operator between the expanded query and the web pages to extract snippet to be well reflected semantic user's intention. The experimental results demonstrate that the proposed method can achieve better snippet extraction performance than the other methods.

A Preliminary Study on the Communication Effect on Team Performance in Main Control Room of SMART

  • Heo, Eun Mee;Byun, Seong Nam
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.97-106
    • /
    • 2013
  • Objective: The aim of this study is to investigate the attributing factors influencing team performance. Background: Technically, it is necessary that operators adapt themselves to computerized and advanced techniques to operate the main control rooms safely in nuclear power plant in Korea. The more main control rooms are digitalized, the more important for operators to have high team performance it is. Method: This paper analyzes team process through literatures review and elicits team performance shaping factor. Especially, the objective of this research is to elicit communication using common team performance shaping factors. Results: This study has found communication through team performance shaping factors in Main Control Room of the SMART. Conclusion: This paper can offer a starting point for team communication, which can use team performance shaping factor framework that are emerging in these new nuclear power plant. Application: As a result, I expect that the evaluation communication for MCR operator's team performance will lead the operating techniques in nuclear power industry internationally.

Comparative Study on the Stability and the Performance in Bilateral Teleoperation

  • Kim, Jin-Wook;Kim, Hyung-Wook;Yi, Byung-Ju;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51.1-51
    • /
    • 2001
  • Teleoperation is a rapidly progressing field promising to have significant application in space, mining, medical, and other areas. Unfortunately, significant communication delays are expected in teleoperation. With this problem, the two major issues in teleoperation are stability robustness and transparency performance. Recent work in bilateral teleoperation in the two-channel showed that for any two-channel control architecture, stability robustness is enhanced if the feedforward control parameters are lowered. In this paper, we analyze the stability and performance robustness of the three channels control architectures using the passivity-based Llewellyn´s absolute stability criterion as wall as the minimum values and Z-width´s of the operator and environment transmitted impedances. And the stability and the performance robustness of two and three channels control architectures are quantitatively compared.

  • PDF

IDENTIFICATION OF HUMAN-INDUCED INITIATING EVENTS IN THE LOW POWER AND SHUTDOWN OPERATION USING THE COMMISSION ERROR SEARCH AND ASSESSMENT METHOD

  • KIM, YONGCHAN;KIM, JONGHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • Human-induced initiating events, also called Category B actions in human reliability analysis, are operator actions that may lead directly to initiating events. Most conventional probabilistic safety analyses typically assume that the frequency of initiating events also includes the probability of human-induced initiating events. However, some regulatory documents require Category B actions to be specifically analyzed and quantified in probabilistic safety analysis. An explicit modeling of Category B actions could also potentially lead to important insights into human performance in terms of safety. However, there is no standard procedure to identify Category B actions. This paper describes a systematic procedure to identify Category B actions for low power and shutdown conditions. The procedure includes several steps to determine operator actions that may lead to initiating events in the low power and shutdown stages. These steps are the selection of initiating events, the selection of systems or components, the screening of unlikely operating actions, and the quantification of initiating events. The procedure also provides the detailed instruction for each step, such as operator's action, information required, screening rules, and the outputs. Finally, the applicability of the suggested approach is also investigated by application to a plant example.

Position Control of the Pneumatic Excavator System Using Adaptive Sliding Mode Controller (적응슬라이딩 모드 제어기를 이용한 공압굴삭기 시스템의 위치 제어)

  • Lim, Tae-Hyeong;Cheon, Se-Young;Yang, Soon-Yong;Choi, Jeong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.82-87
    • /
    • 2007
  • Excavator has been used in wide field since the attachment in the end effect can be changeable according to the purpose of working. However, efficiency of work using excavator mainly depends on an operator's ability. For the purpose of improving the efficiency of work and reducing the fatigue of operator, the automatic excavator system has been researched. In this paper, the tracking control system of each links of excavator is designed before developing the automatic excavator system. In order to apply the tracking control system, the pneumatic excavator system is developed and the tracking control system is applied. For designing the tracking control system, the adaptive sliding mode control algorithm is proposed. The performance of the proposed control system is evaluated through experiments using the pneumatic excavator system.

Isolating vehicle license plate area using the known information (사전정보를 이용한 차량번호판 영역의 분리)

  • 문기주;신영석;최효돈
    • Korean Management Science Review
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 1996
  • Two different methods to extract the license plate area of a vehicle have been used for automatic recognition purposes. One method is with a color vision system and the other is with an edge detecting operator. The system with color vision has some problems if the colors of license plate and vehicle's body are similar. The various plate colors in Korea also drops the system performance. The edge detecting operator also has a problem for a real time processing since it performs on all pixels of the scene. In this paper a possible method using gray level vision system and available pre-known information of license plates is suggested. The suggested procedure searches the lower boundary of the plate by counting high contrast points between one and near pixel from the bottom line of the scene. It finds the upper boundary from the bottom line by adding number plate height after finding the lower boundary. The left and right boundaries are found by similar processes.

  • PDF

Reliability Analysis of the Man-Machine System Operating under Different Weather Conditions (기후조건을 고려한 인간-기계체계의 신속도)

  • 이길노;하석태
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.1
    • /
    • pp.76-87
    • /
    • 1997
  • This paper deals with reliability and MTTF analysis of a non-repairable man-machine system operating under different weather conditions. The system consists of a hardware(machine) and a two-operator standby subsystem such as the air combat maneuvering of fighters with dual seat. The failure times for the subsystems follow the exponential distribution with constant parameter. By considering not only the effect on hardware component but also the weather conditions and human performance factors such as the operator's errors, a Markov model is presented as a method for evaluating the system reliability of time continuous operation tasks. Laplace transforms of the various state probabilities have been derived and then reliability of the system, at any time t, has been computed by inversion process. MTTF has also been computed.

  • PDF