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Abstract. In this study, we solve the Cayley inclusion problem and the fixed point prob-

lem in real Hilbert space using Tseng’s technique with inertial extrapolation in order to

obtain more efficient results. We provide a strong convergence theorem to approximate

a common solution to the Cayley inclusion problem and the fixed point problem under

some appropriate assumptions. Finally, we present a numerical example that satisfies the

problem and shows the computational performance of our suggested technique.

1. Introduction

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and induced norm
∥ · ∥. A “Zero-Point Problem” (ZPP) for monotone operators is defined as follows:
find x∗ ∈ H such that

0 ∈ Tx∗,(1.1)

where T : H → H is a monotone operator. Several authors have focused on the
convergence of iterative methods in order to locate a zero-point for monotone oper-
ators in Hilbert spaces. Martinet [9] constructed the “Proximal Point Algorithm”
(PPA) to solve problem (1.1). The PPA is depicted as:

xn+1 = (I+ λnT)
−1xn, ∀n ≥ 1,(1.2)
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where I is the identity mapping, and {λn} is a sequence of positive real numbers.
After Martinet [9], several algorithms were developed to solve (ZPP). The reader
can see [10] - [14] and for more information, refer to the citations provided in this
article.

The “Monotone Inclusion Problem” (MIP) is to obtain x∗ ∈ H such that

0 ∈ (D+M)x∗.(1.3)

where D : H → H is a single-valued mapping and M : H ⇒ H is a multi-valued
mapping. The MIP (1.3) can be written as the ZPP (1.1) by setting T := D+M.

According to Lions and Mercier [6], the most common way to solve the problem
(1.3) is to use the forward-backwrad splitting method, defined as follows:

xn+1 = (I+ λM)−1(I− λD)xn, ∀n ≥ 1,(1.4)

where x1 ∈ H is arbitrarily chosen and λ > 0. In algorithm (1.4), the operator
D is called a forward operator and M is called a backward operator. For more
details about the forward-backward splitting method used to solve the MIP (1.3),
the reader is directed to see [5, 7, 14].

Polyak [11] introduced the inertial extrapolation method to speed up the rate
of convergence of the iteration. This is sometimes called the heavy ball method.
Many scholars have exploited this notion to combine algorithms with inertial terms
to speed up the rate of convergence.

In 2015, Lorenz and Pock [7] studied the MIP (1.3) and proposed the inertial
forward-backward algorithm for monotone operators, which combines the heavy ball
method and forward-backward method. The algorithm is defined as:{

wn = xn + θn(xn − xn−1)
xn+1 = (I+ λM)−1(I− λD)wn, ∀n ≥ 1,

(1.5)

where x0, x1 ∈ H are arbitrarily chosen, and D : H → H and M : H ⇒ H are
single and multi-valued mappings, respectively. The sequence {xn} generated by
algorithm (1.5) converges weakly to a solution of MIP (1.3) with some suitable
assumptions.

There are many ways to solve the MIP other than using an algorithm combined
with the heavy ball idea. Tseng [15] introduced the modified forward-backward
splitting method, a powerful iterative method for solving the monotone inclusion
problem (1.3). In short, it is known as Tseng’s splitting algorithm. Let C be a
closed and convex subset of a real Hilbert space H. Tseng’s splitting algorithm is
defined as: {

yn = (I+ λnM)−1(I− λnD)xn

xn+1 = PC(yn − λn(Dyn −Dxn)), ∀n ≥ 1,
(1.6)

where x1 ∈ H is arbitrarily chosen, λn is chosen to be the largest λ ∈ {δ, δl, δl2, ..}
satisfying λ∥Dyn −Dxn∥ ≤ µ∥xn − yn∥ where δ > 0, l ∈ (0, 1), µ ∈ (0, 1) and PC is
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the projection onto a closed convex subset C of H.
Kitkaun and Kumam [5] combined the forward -backward splitting method with

the viscosity approximation method for solving MIP (1.3). It is called the inertial
viscosity forward-backward splitting algorithm, which is defined as:{

wn = xn + θn(xn − xn−1)
xn+1 = αnδf(xn) + (1− αn)(I− λnM)−1(I− λnD)wn, ∀n ≥ 1,

(1.7)

where x0, x1 ∈ H are arbitrarily chosen, f : H → R is a differentiable function such
that its gradient δf is a contraction with constant ρ ∈ (0, 1) and D : H → H and
M : H ⇒ H are an inverse strongly monotone and a maximal monotone operator,
respectively. The sequence generated by the algorirthm (1.7) converges strongly to
a solution of MIP (1.3) under suitable conditions.

Now we define a new type of monotone inclusion problem known as “Cayley’s
Inclusion Problem” (CIP). Find x∗ ∈ H such that

0 ∈ (CM
λ +M)x∗(1.8)

where M : H ⇒ H is a multi-valued maximal monotone mapping, CM
λ := 2JMλ −I is

the single valued mapping and known as “Cayley operator” and JMλ := (I+λM)−1

is the “resolvent operator” associated with maximal monotone mapping M with
λ > 0. The solution set of CIP is denoted as:

Ω := {x ∈ H : 0 ∈ CM
λ (x) +M(x)}.

Let S : H → H be a nonexpansive mapping. A fixed point of S is a point x ∈ H

such that

S(x) = x.(1.9)

The set of all fixed point of S is denoted by Fix(S)={x ∈ H : S(x) = x}.

The objective of this article is to propose an algorithm consisting of Tseng’s
technique with inertial extrapolation and applying the viscosity iterative method
in order to obtain the common solution of CIP and Fix(S) in the framework of
real Hilbert space. Moreover, we show that the sequences generated by the algo-
rithm are strongly convergent to the point in the solution set Σ := Ω ∩ Fix(S). In
particular, we give numerical illustrations of the algorithm.

2. Mathematical Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H.
The weak convergence of {xn}∞n=1 to x is denoted by xn ⇀ x as n → ∞, while the
strong convergence of {xn}∞n=1 to x is written as xn → x as n → ∞. Now assume
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that x, y, z ∈ H the following relations are valid for inner product spaces,

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩,(2.1)

∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2,(2.2)

∥αx+ βy + γz∥2 = α∥x∥2 + β∥y∥2 + γ∥z∥2(2.3)

− αβ∥x− y∥2 − αγ∥x− z∥2 − βγ∥y − z∥2

for any α, β, γ ∈ [0, 1] such that α+ β + γ = 1.

The following definitions are required to obtain the desired results.

Definition 2.1. Let D : H → H be a single-valued mapping, then it is said to be
(i) nonexpansive if for all x, y ∈ H,

∥D(x)−D(y)∥ ≤ ∥x− y∥,

(ii) firmly nonexpansive if for all x, y ∈ H,

∥D(x)−D(y)∥2 ≤ ⟨Dx−Dy, x− y⟩,

(iii) L-Lipschitz continuous if for all x, y ∈ H, there exists L > 0 such that

∥D(x)−D(y)∥ ≤ L∥x− y∥,

(iv) α-strongly monotone if for all x, y ∈ H, there exists a constant α > 0 such that

⟨D(x)−D(y), x− y⟩ ≥ α∥x− y∥2,

(v) µ- inverse strongly monotone if for all x, y ∈ H, there exists a constant µ > 0
such that

⟨D(x)−D(y), x− y⟩ ≥ µ∥D(x)−D(y)∥2.

Definition 2.2. Let M : H ⇒ H be a multi-valued mapping, then it is said to be
(i) monotone if for all x, y ∈ H, u ∈ M(x), v ∈ M(y) such that

⟨x− y, u− v⟩ ≥ 0,

(ii) strongly monotone if for all x, y ∈ H, u ∈ M(x), v ∈ M(y), there exist θ > 0
such that

⟨x− y, u− v⟩ ≥ θ∥x− y∥2,

(iii) maximal monotone if M is monotone and (I+λM)(H)=H for all λ > 0, where
I is the identity mapping on H.
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Definition 2.3 Let M : H ⇒ H be a multi-valued mapping, then the resolvent
operator associated with M is defined as:

JMλ (x) = [I+ λM]−1(x), ∀x ∈ H.

Here λ > 0 and I is the identity mapping.

Remark 2.3. The resolvent operator JMλ has the following properties:
(i) it is single-valued and nonexpansive, i.e.,

∥JMλ (x)− JMλ (y)∥ ≤ ∥x− y∥,∀x, y ∈ H,

(ii) it is 1-inverse strongly monotone, i.e,

∥JMλ (x)− JMλ (y)∥2 ≤ ⟨x− y, JMλ (x)− JMλ (y)⟩, ∀x, y ∈ H.

Definition 2.4. Let M : H ⇒ H be a multi-valued mapping and JMλ be the
resolvent operator associated with M, then the Cayley operator CM

λ is defined as:

CM
λ (x) = [2JMλ (x)− I],∀x ∈ H.(2.4)

Remark 2.5. Using Remark 2.3.(i), it can be easily seen that the Cayley operator
CM
λ is 3-Lipschitz continuous. Now, for the sake of convenience we shall denote CM

λ

by C throughout the paper.

Lemma 2.6. Let M : H ⇒ H be a maximal monotone mapping and B : H → H

be a Lipschitz continuous mapping. Then a mapping B+M : H ⇒ H is a maximal
monotone mapping.

Lemma 2.7. Let M : H ⇒ H be a set-valued maximal monotone mapping and
λ > 0. Then the following statements hold:

1. JMλ is a single-valued and firmly nonexpansive mapping;

2. Fix(JMλ )= M−1(0);

3. ∥x− JMλ ∥ ≤ 2∥x− JMγ ∥, 0 < λ ≤ γ, ∀x ∈ H;

4. (I− JMλ ) is firmly nonexapansive mapping;

5. Suppose that M−1(0) ̸= ϕ. Then
∥JMλ (x)− z∥2 ≤ ∥x− z∥2 − ∥JMλ (x)− x∥2 for all x ∈ H and z ∈ M−1(0)
and
⟨x− JMλ , JMλ − z⟩ ≥ 0 for all x ∈ H and z ∈ M−1(0).
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Lemma 2.8.([16])Let {an} and {cn} be nonnegative sequences of real numbers
such that

∑∞
n=1 cn < ∞, and let {bn} be a sequence of real numbers such that

lim supn→∞ bn ≤ 0.If there exists n0 ∈ N such that,for any n ≥ n0,

an+1 ≤ (1− αn)an + αnbn + cn,

where {αn} is a sequence in (0, 1) such that
∑∞

n=0 αn = ∞, then limn→∞ an = 0.

Lemma 2.9.([4]) Let C be a closed convex subset of H and S : C → C a nonexa-
pansive mapping with Fix(S) ̸= ϕ. If there exists {xn} in C satisfying xn ⇀ z and
∥xn − Sxn∥ → 0, then z = Sz.

Lemma 2.10.([8]) Let {γn} is a sequence of real numbers. Suppose that there is
subsequence {γnj}j≥0 of {γn} satisfying γnj ≤ γnj+1 for each j ≥ 0. Let {ϕ(n)}n≥n∗

be a sequence of integers defined by

ϕ(n) := max{k ≤ n : γk < γk+1}.(2.5)

Then {ϕ(n)}n≥n∗ is a nondecreasing with limn→∞ ϕ(n) = ∞. Moreover, for each
n ≥ n∗, we have γϕ(n) ≤ γϕ(n)+1 and γn ≤ γϕ(n)+1.

3. Main Result

In this section, we present an inertial Tseng type algorithm for solving our
problem. For the convergence analysis of the proposed method, we consider the
following assumptions in order to accomplish our goal.

Assumption 1. H is a real Hilbert space, C : H → H is L-Lipschitz continuous
and monotone, and M : H ⇒ H is a maximal monotone operator.

Assumption 2. Σ := Ω ∩ F (S) is nonempty.

Assumption 3. {θn} ⊂ [0, θ), {βn} ⊂ (β∗, β
′
) ⊂ (0, 1 − αn) for some θ > 0, β∗ >

0, β
′
> 0, and {αn} ⊂ (0, 1) satisfies limn→∞ αn = 0 and

∑∞
n=1 αn = ∞.

Assumption 4. f : H → H is a ρ-contractive mapping.

Next the algorithm is presented.
Lemma 3.1. Assume that Assumptions 1 − 4 hold, then any sequence {λn} in
Algorithm is nonincreasing and converges to λ such that min{λ1,

µ
L} ≤ λ.

Proof. See [17, Lemma 3.1]. �
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Algorithm 3.2. Inertial-viscosity Tseng type algorithm

Initialization: Given λ1 > 0 and µ ∈ (0, 1). Select arbitrary elements x0, x1 ∈ H

and set n := 1.
Iterative Steps: Construct {xn} by using the following steps:
Step 1. Set

wn = xn + θn(xn − xn−1)

and compute,

yn = JMλn
(I− λnC)wn.

If wn = yn, then stop and wn ∈ Σ. Otherwise
Step 2. Compute

zn = yn − λn(Cyn − Cwn)

and
Step 3. Compute

xn+1 = αnf(xn) + (1− αn − βn)xn + βnS(zn)

and update,

λn+1 =

{
min

{
µ ∥wn−yn∥

∥Cwn−Cyn∥ , λn

}
if Cwn ̸= Cyn;

λn otherwise.

Replace n by n+ 1 and then repeat Step1.

Lemma 3.3. Let q ∈ Σ. As given in the algorithm together with all four Assump-
tions, the following inequalities are true.

∥zn − q∥2 ≤ ∥wn − q∥2 −

(
1− µ2 λ2

n

λ2
n+1

)
∥wn − yn∥2(3.1)

and

∥zn − yn∥ ≤ µ
λn

λn+1
∥wn − yn∥.(3.2)

Proof. In the same manner as [3, Lemma 6], we obtain that inequalities (3.1) and
(3.2) hold. �

Lemma 3.4. Suppose that limn→∞ ∥wn − yn∥ = 0.If there exists a weakly conver-
gent subsequences {wnj} of {wn}, then under Assumptions 1− 4, we have that the
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limit of {wnj} belongs to Σ.

Proof The proof is similar to the proof of [3, Lemma7]. �

With the above results we are now ready for the main convergence theorem.

Theorem 3.5. Suppose that limn→∞
θn
αn

∥xn−xn−1∥ = 0, then under Assumptions
1-4, we have xn → q as n → ∞, where q = PΣ ◦ f(q).

Proof. For the sake of simplicity, we divide the proof into four claims.

Claim 1. {xn} is bounded sequence.

We observe from (3.1) that limn→∞

(
1 − µ2 λ2

n

λ2
n+1

)
= 1 − µ2 > 0. Let q′ ∈ Σ and

indeed, thanks to Lemma (3.2), we get

∥zn − q′∥ ≤ ∥wn − q′∥.(3.3)

Also, from the definition of {yn} and nonexansiveness of JMλ , we have

∥yn − q′∥ ≤ ∥JMλn
(I− λnC)wn − q′∥

≤ ∥wn − q′∥(3.4)

By the sequence { θn
αn

∥xn − xn−1∥} converges to 0, we have that there exists a con-

stant M1 such that, for all n ∈ N,

θn
αn

∥xn − xn−1∥ ≤ M1.

From the definition of wn and (3.3), we obtain

∥zn − q′∥ ≤ ∥wn − q′∥ = ∥xn + θn(xn − xn−1)∥
≤ ∥xn − q′∥+ θn∥xn − xn−1∥

≤ ∥xn − q′∥+ θn
αn

∥xn − xn−1∥αn

≤ ∥xn − q′∥+ αnM1.(3.5)

By Assumption 4, nonexpansiveness of S and using (3.10), the following relation is
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obtained:

∥xn+1 − q′∥ = ∥αnf(xn) + (1− αn − βn)xn + βnS(zn)− q′∥
≤ ∥αn(f(xn)− q′) + (1− αn − βn)(xn − q′) + βn(Szn − q′)∥
≤ αn∥f(xn)− q′∥+ (1− αn − βn)∥xn − q′∥+ βn∥Szn − q′∥
≤ αn∥f(xn)− q′∥+ (1− αn − βn)∥xn − q′∥+ βn∥zn − q′∥
≤ αn∥f(xn)− f(q′)∥+ αn∥f(q′)− q′∥+ (1− αn)∥xn − q′∥+ αnβnM1

≤ [1− αn(1− ρ)]∥xn − q′∥+ αn(∥f(q′)− q′∥+M1)

= [1− αn(1− ρ)]∥xn − q′∥+ αn(1− ρ)
∥f(q′)− q′∥+M1

1− ρ

≤ max

{
∥xn − x∥, ∥f(q

′)− q′∥+M1

1− ρ

}

≤ max

{
∥xn−1 − x∥, ∥f(q

′)− q′∥+M1

1− ρ

}
...

≤ max

{
∥x0 − x∥, ∥f(q

′)− q′∥+M1

1− ρ

}
.

This leads to a conclusion that ∥xn+1 − q′∥ ≤ max
{
∥x0 − x∥, ∥f(q′)−q′∥+M1

1−ρ

}
. Con-

sequently, the sequence {xn} is bounded. In addition, {f(xn)} is also bounded.
Since Σ is closed and convex set, PΣ ◦ f is a ρ− contractive mapping. Now, we can
uniquely find q ∈ Σ with q = PΣ ◦f(q) duq’ to the Banach fixed point theorem. We
also get, that for any q′ ∈ Σ,

⟨f(q)− q, q′ − q⟩ ≤ 0.

Now, for each n ∈ N, set γn := ∥xn − q∥2.

Claim 2. There is M0 > 0 such that

βn(1− αn − βn)∥xn − Szn∥2 ≤ γn − γn+1 + αn(∥f(xn)− q∥2 +M0).

Applying (3.5), we have

∥zn − q∥2 ≤ (∥xn − q∥+ αnM1)
2

=γn + αn(2M1∥xn − q∥+ αnM
2
1 )

≤γn + αnM0(3.6)
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for some M0 > 0. It follows from the assumption on f , (2.3) and (3.6) that

γn+1 = ∥αn(f(xn)− q) + (1− αn − βn)(xn − q) + βn(Szn − q)∥2

= αn∥f(xn)− q∥2 + (1− αn − βn)γn + βn∥Szn − q∥2 − αn(1− αn − βn)∥f(xn)− xn∥2

− βn(1− αn − βn)∥xn − Szn∥2 − αnβn∥f(xn)− Szn∥2

≤ αn∥f(xn)− q∥2 + (1− αn − βn)γn + βn∥zn − q∥2 − βn(1− αn − βn)∥xn − Szn∥2

≤ αn∥f(xn)− q∥2 + (1− αn)γn + αnβnM0 − βn(1− αn − βn)∥xn − Szn∥2

≤ γn + αn(∥f(xn)− q∥2 +M0)− βn(1− αn − βn)∥xn − Szn∥2.

Therefore, Claim 2 is obtained

Claim 3. There is M > 0 such that

γn+1 ≤ [1− αn(1− ρ)]γn + αn(1− ρ)

[
3M

1− ρ
· θn
αn

∥xn − xn−1∥
]

+ αn(1− ρ)

[
2M

1− ρ
∥xn − Szn∥+

2

1− ρ
⟨f(q)− q, xn+1 − q⟩

]
(3.7)

Indeed, setting tn := (1− βn)xn + βnSzn. From inequality (3.3), nonexpansiveness
of S, and the definition of wn, we get

∥tn − q∥ ≤ (1− βn)∥xn − q∥+ βn∥Szn − q∥
≤ (1− βn)∥xn − q∥+ βn∥zn − q∥
≤ (1− βn)∥xn − q∥+ βn∥wn − q∥
≤ ∥xn − q∥+ βnθn∥xn − xn−1∥(3.8)

and

∥xn − tn∥ = βn∥xn − Szn∥.(3.9)
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Hence, from the assumption on f , and (3.1), (3.8), and (3.9), we obtain,

γn+1 = ∥(1− αn)(tn − q) + αn(f(xn)− f(q))− αn(xn − tn)− αn(q − f(q))∥2

≤ ∥(1− αn)(tn − q) + αn(f(xn)− f(q))∥2 − 2αn⟨xn − tn + q − f(q), xn+1 − q⟩

≤ (1− αn)∥tn − q∥2 + αn∥f(xn)− f(q)∥2 + 2αn⟨tn − xn, xn+1 − q⟩
+ 2αn⟨f(q)− q, xn+1 − q⟩

≤ (1− αn)(∥xn − q∥+ βnθn∥xn − xn−1∥)2 + αnρ
2∥xn − q∥2

+ 2αn∥tn − xn∥∥xn+1 − q∥+ 2αn⟨f(q)− q, xn+1 − q⟩

≤ (1− αn)γn + 2θn∥xn − q∥∥xn − xn−1∥+ θ2n∥xn − xn−1∥2 + αnργn

+ 2αnβn∥xn − Szn∥∥xn+1 − q∥++2αn⟨f(q)− q, xn+1 − q⟩
≤ [1− αn(1− ρ)]γn + θn∥xn − xn−1∥(2∥xn − x∥+ θn∥xn − xn−1∥)
+ 2αnβn∥xn − Szn∥∥xn+1 − q∥+ 2αn⟨f(q)− q, xn+1 − q⟩
≤ [1− αn(1− ρ)]γn + 3Mθn∥xn − xn−1∥+ 2Mαnβn∥xn − Szn∥
+ 2αn⟨f(q)− q, xn+1 − q⟩

≤ [1− αn(1− ρ)]γn + αn(1− ρ)

[
3M

1− ρ
· θn
αn

∥xn − xn−1∥
]

+ αn(1− ρ)

[
2M

1− ρ
∥xn − Szn∥+

2

1− ρ
⟨f(q)− q, xn+1 − q⟩

]
for M := supn∈N{∥xn − q∥, θ∥xn − xn−1∥} > 0. Recall that our task is to show
that xn → p which is now equivalent to show that γn → 0 as n → ∞.

Claim 4. γn → 0 as n → ∞.

Consider the following two cases:
Case (i). We can find N ∈ N satisfying γn+1 ≤ γn for each n ≥ N.
Since each term γn is nonnegative, it is convergent. Due to the fact that

limn→∞ αn = 0 and limn→∞ βn ∈ (0, 1), and by Claim 2,

lim
n→∞

∥xn − Szn∥ = 0(3.10)

Indeed, we immediately get

lim
n→∞

∥xn − θn∥ = lim
n→∞

θn
αn

∥xn − xn−1∥αn = 0(3.11)

In addition, from the definition of zn and by using the triangle inequlity, we obtained
the following inequalities:

∥zn − wn∥ = ∥zn − xn + xn − wn∥
≤ ∥zn − xn∥+ ∥xn − wn∥

and

∥wn − yn∥ ≤ ∥wn − zn∥+ ∥zn − yn∥
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It follows from inequality (3.2) that

(1− µ
λn

λn+1
)∥wn − yn∥ ≤ ∥zn − xn∥+ ∥xn − wn∥

since limn→∞[1− (1− µ
λn

λn+1
)2] = 1− µ2 > 0, (3.10) and (3.11),

lim
n→∞

∥wn − yn∥ = 0.(3.12)

Note that, for each n ∈ N

∥xn+1 − xn∥ ≤ ∥xn+1 − zn∥+ ∥zn − xn∥
≤ αn∥f(xn)− xn∥+ (2− βn)∥xn − zn∥.(3.13)

Consequently, since limn→∞ αn = 0 and by (3.13), limn→∞ ∥xn+1 − xn∥ = 0. Next
observe that, for the reason that {xn} is bounded, there is z ∈ H so that xnk

⇀ z
for some subsequence {xnk

} of {xn}. Then Lemma 3.3 together with (3.12) implies
that z ∈ Σ. As a result, by the definition of q, it is straightforward to show that

lim sup
n→∞

⟨f(q)− q, xn − q⟩ = lim
k→∞

⟨f(q)− q, xnk
− q⟩ = ⟨f(q)− q, z − q⟩ ≤ 0.

Since limn→∞ ∥xn+1 − xn∥ = 0, the following result obtained:

lim sup
n→∞

⟨f(q)− q, xn+1 − q⟩ ≤ lim sup
n→∞

⟨f(q)− q, xn+1 − xn⟩+ lim sup
n→∞

⟨f(q)− q, xn − q⟩

≤ 0.

Applying Lemma 2.8. to the inequality from Claim 3, we can conclude that
limn→∞ γn = 0.

Case (ii). We can find nj ∈ N satisfying nj ≥ j and γnj < γnj+1 for all j ∈ N.
According to Lemma 2.10., the inequality γϕ(n) ≤ γϕ(n)+1 is obtained, where

ϕ : N → N is defined by (2.5). This implies, by Claim 2, that

βϕ(n)(1− αϕ(n) − βϕ(n))∥xϕ(n) − Szϕ(n)∥2

≤ γϕ(n) − γϕ(n+1) + αϕ(n)

(
∥f(xϕ(n))− q∥2 +M0

)
.

Similar to case (i), since αn → 0 as n → ∞, we obtain

limn→∞ ∥xϕ(n) − zϕ(n)∥ = 0.

Furthermore, an argument similar in case (i) shows that

lim sup
n→∞

⟨f(q)− q, xϕ(n)+1 − q⟩ ≤ 0.(3.14)
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Finally, from the inquality γϕ(n) ≤ γϕ(n)+1 and by Claim 3, we obtain

γϕ(n)+1 ≤ [1− αϕ(n)(1− ρ)]γϕ(n) + αϕ(n)(1− ρ)

[
3M

1− ρ
·
θϕ(n)

αϕ(n)
∥xϕ(n) − xϕ(n)−1∥

]
+ αϕ(n)(1− ρ)

[
2M

1− ρ
∥xϕ(n) − Szϕ(n)∥+

2

1− ρ
⟨f(q)− q, xϕ(n)+1 − q⟩

]
.

Some simple calculations yield

γϕ(n)+1 ≤ 3M

1− ρ
·
θϕ(n)

αϕ(n)
∥xϕ(n) − xϕ(n)−1∥+

2M

1− ρ
∥xϕ(n)− Szϕ(n)∥

+
2

1− ρ
⟨f(q)− q, xϕ(n)+1 − q⟩.

From this it follows that lim supn→∞ γϕ(n)+1 ≤ 0. Thus, limn→∞ γϕ(n)+1 = 0. In
addition by Lemma (2.5),

lim
n→∞

γn ≤ lim
n→∞

γϕ(n)+1 = 0

Hence, xn converges strongly to q. This proves our theorem. �

4. Numerical Illustration

Example 4.1. Let H = R, the set of real numbers and f : R → R be contraction
mapping and M : R ⇒ R be a set-valued map. Let f(x) = x

10 and M={x
5} ∀x ∈ R,

then we calculate resolvent operator JMλ and Cayley operator CM
λ for λ = 1 as

JMλ (x) = [I + λM]−1(x) =
5x

6
.

CM
λ (x) = [2JMλ (x)− I] =

2x

3
,

let S : R → R be defined as S(x) = x and αn = 1
n , βn = 1

2n , λn = 1
n+3 and

θn = 1
(n+1)2 .

All the assumptions of Theorem 3.1 are satisfied and algorithm 3.1 reduces to

wn = xn + θn(xn − xn−1)

yn = JMλn
(I − λnC)wn

zn = yn − λn(Cyn − Cwn)

xn+1 =
1

n
f(xn)−

2n− 3

2n
xn +

1

2n
S(zn).
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fig.1:  xn converges to q=0 for different initial values of x0, x1=1,3.5,5
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Figure 1: xn converges to q = 0 for different initial values of x0 and x1

The iterative sequence {xn} generated in the above algorithm is converges strongly
to q = 0.

All of the codes have been developed in MATLAB R2021a for simplicity. We’ve
tried for different initial points x0 = x1 = 1, 3.5, 5.0, and found that the sequence
{xn} converges to the solution of the problem in each case. Graph of convergence
is depicted in the fig.1.

5. Conclusion

We conclude that by combining the Tseng’s technique with inertial extrapola-
tion, the algorithm generated for Cayley inclusion problem and fixed point problem
is feasible and converges to some point in the solution set Σ of our problem in the
framework of real Hilbert space. The numerical illustration ensures that the rate
of converges of the suggested algorithm is effective and faster as compare it to the
previously known algorithms in [2].
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