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Abstract 

 
In order to improve the utilization of irrigation water resources of greenhouse tomatoes, a 
water-saving irrigation decision-making model based on genetic optimization T-S fuzzy 
neural network is proposed in this paper. The main work are as follows: Firstly, the 
traditional genetic algorithm is optimized by introducing the constraint operator and update 
operator of the Krill herd (KH) algorithm. Secondly, the weights and thresholds of T-S fuzzy 
neural network are optimized by using the improved genetic algorithm. Finally, on the basis 
of the real data set, the genetic optimization T-S fuzzy neural network is used to simulate and 
predict the irrigation volume for greenhouse tomatoes. The performance of the genetic 
algorithm improved T-S fuzzy neural network (GA-TSFNN), the traditional T-S fuzzy neural 
network algorithm (TSFNN), BP neural network algorithm(BPNN) and the genetic 
algorithm improved BP neural network algorithm (GA-BPNN) is compared by simulation. 
The simulation experiment results show that compared with the TSFNN, BPNN and the 
GA-BPNN, the error of the GA-TSFNN between the predicted value and the actual value of 
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the irrigation volume is smaller, and the proposed method has a better prediction effect. This 
paper provides new ideas for the water-saving irrigation decision in greenhouse tomatoes. 

 
Keywords: T-S fuzzy neural network, genetic optimization, krill herd, irrigation decision, 
greenhouse tomatoes, Internet of Things 
 
 
 

1. Introduction 

The annual agricultural water consumption accounts for 65 percent of the country's total 

water consumption in China and the utilization rate of water resources in greenhouse is 
generally low [1]. In the process of tomatoes growth and development in greenhouse, there 
are many large leaves and the transpiration coefficient is high. Therefore, the water 
consumption is large. In addition, the water management in greenhouse vegetables 
production in China lacks scientific quantitative indicators, and water irrigation is 
unreasonable and unscientific [2]. In order to increase production, farmers are mainly 
experienced in irrigation and high-yield irrigation in the production process, resulting in 
serious waste of water resources, and also accompanied by problems such as soil salinization, 
aggravation of diseases and insect pests, decline in the quality of tomatoes, and decline in 
yield, and etc [3]. The volume of irrigation and irrigation time directly affect the growth, 
development, yield, quality, and soil environment of the vegetables. Therefore, the 
realization of precise water-saving irrigation plays a crucial role in greenhouse tomatoes [4]. 

Agricultural IoT monitors the agricultural production environment by using a large 
number of sensor nodes to form a monitoring network in the agricultural production process, 
which provides a strong basis for scientific production and analysis. Wireless sensor network 
(WSN) is an important means to solve the problem of agricultural information perception to 
obtain the “last mile”. The current facility intelligent decision-making for water-saving 
irrigation of tomatoes is mainly calculated by referring to the crop evapotranspiration (ET0) 
[5], However, this method requires high accuracy for the collected environment data of the 
Internet of Things (IoT), and the error of the calculation result is also relatively large. It can't 
meet the real-time demand of precision irrigation. 

Based on the analysis of relevant factors affecting the irrigation volume and the original 
calculation ET0 method, we find that the irrigation volume has a strong relationship with the 
growth stage of crops, inside solar radiation, the temperature and humidity of soil, the 
temperature and humidity of air and other factors, so the water-saving irrigation technology 
is a typical multi-factor decision problem. Although these factors have specific values, they 
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also have certain fuzzy attributes. The fuzzy neural network has the advantages of handling 
uncertain, non-linear, ill-posed problems and the advantages of parallel computing and 
adaptive learning. Compared with the traditional irrigation calculation method, the fuzzy 
neural network has better performance and it can better achieve the goal of precision 
irrigation [6]. 

Therefore, combining fuzzy theory with neural network, this paper puts forward a 
water-saving irrigation decision-making model based on genetic optimization T-S fuzzy 
neural network for greenhouse tomatoes. This method overcomes the problem of low 
accuracy in fuzzy system, and is more efficient than the system which only uses the artificial 
neural network (ANN). The real-time environmental data such as inside solar radiation, air 
temperature and humidity, soil temperature and humidity is collected by the Internet of 
Things in greenhouse. Combined with information on current tomatoes’ growth and 
development stages, etc., the demand pattern and influencing factors of greenhouse tomatoes 
under regulated deficit irrigation conditions are analyzed. Based on T-S fuzzy neural network, 
a water-saving irrigation decision-making model for greenhouse tomatoes, called 
GA-TSFNN, is constructed. Above all, the constraint operator and update operator of the 
Krill herd (KH) algorithm [7] are used to optimize the traditional genetic algorithm. 
Subsequently, the weights and thresholds of T-S fuzzy neural network are optimized by using 
the improved genetic algorithm. Finally, the GA-TSFNN is used to simulate and predict the 
irrigation volume for greenhouse tomatoes. It optimized the weights and thresholds of fuzzy 
neural network, thus implemented precise irrigation. It makes the soil always stay in the 
most appropriate humidity state and it is designed to keep the tomatoes of high and stable 
yield at the same time, through the scientific and reasonable water-saving irrigation 
management, finally it can achieve the goal of saving energy and water, environmental 
protection, and raising the quality of vegetables. 

The rest of the paper is organized as follows. The research status of water-saving irrigation 
for greenhouse tomatoes in domestic and foreign countries is introduced in Section 2. The 
relevant theories of fuzzy neural network, the influencing factors of water-saving irrigation 
and a water-saving irrigation decision-making model for greenhouse tomatoes based on T-S 
fuzzy neural network using an improved genetic algorithm are proposed in Section 3. 
Subsequently, the simulation experiments and results analysis are provided in Section 4. 
Finally, the conclusion and the direction of future research work are provided in Section 5. 

2. Related work 

In the process of vegetable growth and development, the water requirement at the seedling 
stage is relatively small, and the amount of water during the product organ formation is 
relatively large. This is also the critical period of vegetable water demand. At this time, water 
shortage has a greater impact on the yield and quality. The change in the actual water 
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consumption of crops is affected by various environmental factors such as light, temperature, 
soil texture, etc. 

Liu et al. [8] found that the water requirement of greenhouse tomatoes is shown in the 
early stage, in the medium term, and in the later period when the change rule is first 
increased and then reduced. The peak water requirement occurs in the flowering and fruit 
setting period and the early mature harvesting. There is a linearly positive correlation 
between tomatoes water requirement and solar radiation, air temperature and saturation, and 
a linearly negative correlation with relative humidity and a linearly positive correlation with 
leaf area index. The tomatoes water requirement in greenhouse is affected by the 
meteorological factors and its own growth and development status. Kumar et al. [9] found 
that water stress significantly affected tomato dry matter accumulation and total soluble 
solids content. Water stress occurred throughout the growing season, and both dry matter 
content and sugar concentration are significantly increased during fruit ripening. Harmanto 
et al., [10] Singh et al. [11] and other studies have reached the same conclusion. Based on the 
complexity and real-time of irrigation process, Chen et al. [12] developed a water-saving 
irrigation management and decision support system software and made irrigation forecasts to 
determine the precise irrigation time and irrigation volume. However, there are still 
deficiencies in timeliness and dynamics. Due to the complexity of water-saving irrigation 
systems and statistical errors and lags, the accuracy and real-time of some data are reduced, 
so the system's decision accuracy is not high enough. Based on Internet of Things technology 
and wireless sensor technology, Li et al. [13] designed an intelligent water-saving irrigation 
system, combined with the growth information of different crops and different periods. The 
system regarded the variation of soil humidity content and the rate of deviation change as 
input to establish fuzzy control rules base. Finally, the rules base demonstrated the 
effectiveness of the fuzzy control strategy. However, the impact of crop environmental 
information on irrigation volume has not been considered, and there are certain difficulties in 
the design of fuzzy rules and membership functions for fuzzy control rule bases. In view of 
the problem of predicting effluent total phosphorus in the sewage treatment process, Qiao et al. 
[14] proposed a prediction method based on improved LM and SVD for online modeling of 
self-organizing fuzzy neural networks, which improved the detection accuracy and real-time 
performance. Wang et al. [15] used BP neural network to simulate the irrigation water 
demand and proposed a greenhouse cucumber irrigation model based on BP neural network. 
However, due to considering fewer parameters, the efficiency and accuracy of the prediction 
model needs to be improved. Chen et al. [16] proposed a short-term water temperature 
prediction method for pond culture based on GA-BPNN, which solved the problems of low 
accuracy and poor robustness of traditional water temperature prediction methods, but it did 
not consider adopting fuzzy theory to solve the multi-factor decision problems. 
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Based on previous researches [8-16], this paper combined fuzzy theory with neural 
network to make decisions for water-saving irrigation with T-S fuzzy neural network based 
on genetic optimization for greenhouse tomatoes. This method overcomes the problem of 
low accuracy in fuzzy system, and it has better effect than the system which only uses the 
artificial neural network (ANN). Through real-time environmental data such as the 
temperature and humidity of air and soil, solar radiation in greenhouse by the Internet of 
Things, and combined with information on current tomatoes’ growth and development stages, 
etc., the demand pattern and influencing factors of tomatoes under the condition of regulated 
deficit irrigation are analyzed. The T-S fuzzy neural network based on improved genetic 
algorithm (GA-TSFNN) is used to construct a water-saving irrigation decision-making 
model for greenhouse tomatoes, so that the soil is always maintained in the most appropriate 
humidity state for tomatoes growth, and accurate irrigation can be achieved through a 
scientific and reasonable water management system. 

3. The decision-making model of water-saving irrigation 

3.1 Fuzzy Neural Network 

Fuzzy neural network(FNN) integrates artificial neural network(ANN) with the fuzzy theory 
or fuzzy weight coefficient, and it makes up for the defects and deficiencies of the two, 
through establishing a fuzzy neural network model to take advantages of them, so it has both 
self-learning ability of neural network and the ability of fuzzy logic to process uncertain 
information [17]. The theory and application of T-S fuzzy neural network are more 
researched, especially in the field of pattern recognition and control. The factors affecting the 
water management for greenhouse tomatoes have air temperature and humidity, soil 
temperature and humidity, solar radiation, ground evapotranspiration, and etc [18]. This is a 
typical multi-factor decision problem. Therefore, this paper chooses T-S fuzzy neural 
network to make decisions on the water-saving irrigation for greenhouse tomatoes. 
  The T-S fuzzy system has the self-learning function of automatically updating and 
modifying the membership function of the fuzzy subset using the "if-then" rule to define [19]. 
When the rule is expressed by Ri, the derivation formula is as follows: 

1 1 2 2

0 1 1

  , ,
 

R : ,i i i
k k

i i i
i k k

i x isA x isA x isA
then y p p x p x

If ⋅ ⋅ ⋅

= + + ⋅⋅⋅ +
                         (1) 

where i
jA  is the fuzzy set of fuzzy system, i

jp (j = 1,2, ,k)  is the fuzzy system 

parameter, 1 2, , , kx x x⋅ ⋅ ⋅  are the fuzzy input quantities, and y i  is the output result deduced 

from the fuzzy rules, and the inference rules indicate that the output is the linear combination 
of the input. 
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Set the input variable 1 2( , , , )kx x x x= ⋅⋅⋅  and calculate the degree of membership of each 

input variable based on the fuzzy membership function. The formula is as follows: 

 2exp( ( ) / ), 1, 2, , ; 1, 2, ,i
j

i i
j j jA

x c b j k i nµ = − − = ⋅⋅⋅ = ⋅⋅⋅                (2) 

where i
jc  and i

jb  are the center and width of the membership function respectively, k is 

the number of input parameters, and n is the number of fuzzy subsets. 
Use the membership function to perform fuzzification calculations on each input and then 

use the fuzzy continuous multiplication operator to calculate the weight iw  as Eq. (3). 
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Calculate the output value of fuzzy reasoning iy  based on the fuzzy weight as Eq. (4). 

0 1 1
1 1
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i i i i i
i k k

i i
y w p p x p x w

= =

= + + ⋅⋅⋅ +∑ ∑                      (4) 

The T-S fuzzy neural network consists of five layers: input layer, fuzzy layer, fuzzy logic 

reasoning layer, summation layer and output layer [20]. The input vector ix  is connected to 

the input layer, and the input vector has the same number of dimensions as the number of 
nodes. In the fuzzy layer, the membership function as Eq. (2) is used to fuzz the input values 
to obtain the fuzzy membership value µ . The fuzzy inference layer is calculated by using 
the fuzzy continuous multiplication operator as Eq. (3). The summation layer and the output 
layer adopt Eq. (4) to calculate the output value [21]. 

3.2 The Influence Factors of Irrigation Volume 

The growth environment of greenhouse tomatoes is very different from that of outdoor 
cultivation. The light conditions are weaker, the increasing temperature and humidity is 
significant, the wind speed is smaller, and the air humidity is higher. Therefore, the 
microclimate effect is significant. As a result, the crop evapotranspiration of greenhouse 
tomatoes has its particularity. According to the investigation and research [5], the crop 
evapotranspiration (ETe) is calculated using the reference crop evapotranspiration (ET0) 
multiplied by the crop coefficient (Ke). The formula is as Eq. (5). 

e e 0ET = K ET⋅                                 (5) 
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The crop coefficient is a reflection of the physiological characteristics of the crop itself. It 

is related to crop types, farming conditions, soil fertility, crop leaf area, yield levels, and 
growth period [12]. Crop coefficient can be obtained in two ways. First, the user enters the 
crop coefficients for different crops at different growth stages. Second, the crop coefficient 
values are searched for by the single-average average method recommended by the Food and 
Agriculture Organization of the United Nations (FAO). Then the final Ke value is corrected. 

The reference crop evapotranspiration (ET0) can be derived using the Penman-Monteith 
formula [5] obtained from the data acquired by the IoT sensors or local weather data as Eq. 
(6). 

2

0
2
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where T is the daily average temperature (oC), R n is the net radiation flux of the surface

MJ m d⋅ ⋅-2 -1( ) , en 与 de  are the value of saturated vapor pressure and the actual water vapor 

pressure(kPa) respectively, 2U  is the wind speed at the height of 2m 1(m s )−⋅ , △ is the 

curve slope of the vapor pressure and the temperature in the saturated state 1(kPa C )−⋅ , and 

γ  is the dry wet table constant 1(kPa C )−⋅ . The greenhouse planting environment is a 

no-wind environment, and it is considered that U2=0, thus the formula of ETe is as follows: 

e
0.408 n

e
RET K
γ
∆

=
∆ +

                                  (7) 

 

3.3 The Irrigation Decision Model for GA-TSFNN  

Fuzzy neural network algorithm combines with the advantages of fuzzy systems and neural 
networks which has the advantages of small dependence, strong self-learning ability, strong 
robustness, and etc, therefore it can better solve the typical multi-factor decision problems of 
water-saving irrigation for greenhouse tomatoes [22]. The block diagram of fuzzy neural 
network algorithm is shown in Fig. 1. 
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Fig. 1. The block diagram of fuzzy neural network algorithm 

 
Based on the recommendations of relevant researchers and the study of relevant literatures, 

in view of the irrigation water data of greenhouse tomatoes and the analysis of the factors 
that influence the degree, we choose six input values as the index of evaluation and 
forecasting model of index system which contains the growth period, inside solar radiation, 
the soil humidity in 20cm depth currently, soil temperature in 10cm depth currently, inside 
air humidity and inside air temperature. The output value is irrigation volume [23], therefore 
it can realize the comprehensiveness of water saving irrigation index selection and at the 
same time reduce the complexity of the fuzzy neural network. 

Genetic algorithm has a wide range of applicability and can handle arbitrarily complex 
objective functions and constraints. Since the genetic algorithm uses probability search 
instead of path search, it is a global search in probability. Regardless of whether the problem 
solved is convex, theoretically, the global optimal solution can be obtained and the local 
minimum point can be avoided. In addition to the selection, crossover, and mutation 
operators of genetic algorithms [24], this paper also introduced the constraint operator and 
update operator in the krill herd algorithm to simplify the fuzzy rules and improve the local 
search ability. Krill herd (KH) algorithm is a new kind of swarm intelligence approach for 
optimizing nonlinear functions in continuous space [25]. This way improves the convergence 
speed of genetic algorithm, reduces the complexity and guarantees the timely decision of the 
algorithm, which ensures the rationality of randomly generated fuzzy rules [26]. Firstly, we 
use genetic algorithm to search globally, optimize the initial weight of fuzzy neural network 

including connection weight ω, membership function center i
jc and width i

jb , etc., locate a 

good search space, and use T-S fuzzy neural network to search for optimal values in a small 
space [27,28]. The flowchart of GA-TSFNN is shown in Fig. 2. 
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Fig. 2. The flowchart of GA-TSFNN 

 
The specific steps of decision-making model of GA-TSFNN [29] are as follows: 
(1) The collected greenhouse environmental factors such as growth period, inside solar 

radiation, soil temperature in 10cm depth currently，soil humidity in 20cm depth currently, 
inside air temperature and air humidity and other environmental factors are taken as the 
original data set.  

(2) Using the normalization method to preprocess the data, the accuracy of the model is 
verified using 5-fold cross validation. 

(3) Initialize the population 
A population is randomly generated. Each individual represents the initial weight of a 

neural network. Each gene is a connection weight. Floating-point coding is used to encode 
the weights. 
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(4) Fitness function 
The fitness function value f of each individual is calculated by using the output error value 

T, and the individual of the greatest fitness function enters the subpopulation. 
1

1
f

T
=

+
                                (8) 

(5) Selection operator 
The roulette method is used to select the operator. Assuming that fi is the adaptive value of 

the i-th individual, the probability of being selected is calculated as follows: 

1

i
i m

i
i

fp
f

=

=

∑
                                (9) 

where m is the population size. 
(6) Crossover operator 
The crossover operator selects the arithmetic crossover which combines linear 

combinations of two individuals to get two new individuals. Supposing that the two 
individuals Xi (k), Xi+1 (k) are crossed with crossover probability pc, the two new individuals 
are generated after the crossover are: 

1

1 1

( 1) ( ) ( )
( 1) ( ) ( )

i i i

i i i

X k X k X k
X k X k X k

α β
α β

+

+ +

+ = +
 + = +

                        (10) 

where Xi (k), Xi+1 (k) represent the k th genes of the i-th and i+1 th individuals respectively, 

α and β  are the random numbers between 0 and 1 respectively. 

(7) Mutation operator 
Select the homogenous mutation operator. For each gene value, replace the gene value 

field corresponding to the mutation rate pm by a random number. 

( ) ( 1)i i iX X p r q X n p= + × + − −                   (11) 

where q is the threshold width corresponding to p+1 th gene value. 
  (8) Constraint operator 

In order to ensure the rationality of the genetic algorithm to generate fuzzy rules, the 
constraint operator in the Krill herd algorithm [30] is introduced to obtain effective fuzzy 
rules. The constraint operator guarantees that the solution produced by each individual's 
behavior is legal. When the behavior of selection, crossover, and mutation is performed, a 
new feasible solution is generated according to the problem constraint conditions to ensure 
the rationality of each individual’s structure and parameters [7]. 
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1. If the threshold width i
jb  of the Gaussian membership function is 0, the rule is deleted. 

2. If the connection weights of all elements in a rule are smaller than 0.001, the sub-model 
of this rule is considered useless and is removed directly. 

3. Sort the centers i
jc  of Gaussian membership functions in ascending order. If the 

distance between adjacent centers 1i i i
j j jdc c c += −  is too close, for example, i

jdc ε≤ , ε is 

the approximation of the function, the width corresponding to the center i
jc  of membership 

function will be set to zero. The number of fuzzy rules is decreased. 
(9) Update operator 
The update operator records the fitness function value of the current individual. After each 

individual performs the selection, crossover, and mutation operations, the fitness function 
value is calculated, and the self-adaptation value is compared with the fitness value in the 
update operator, and the optimal individual is assigned to the update operator [31]. 

(10) Determine whether the conditions are met 
Determine whether to reach the maximum number of iterations or meet the accuracy 

requirements. If yes, output the optimal solution; otherwise, return to step (2). After the 
genetics are completed, the optimal individuals obtained from the genetic algorithm are 
taken as the initial weights and thresholds of the neural network. Through the given sample 
data, the neural network is trained according to the T-SFNN and the optimal solution is 
obtained. 

3.4 The Evaluation Indexes of Models 

The relevant agricultural experts have researched on precision irrigation volume for 
greenhouse tomatoes [32,33], so this paper uses the actual irrigation volume as the standard. 
The performance of the algorithms is evaluated by comparing the error between the actual 
value and predicted value. In order to evaluate the performance of the water-saving irrigation 
decision-making model for greenhouse tomatoes comprehensively and accurately, a 5-fold 
cross validation was used to evaluate the prediction effect. the paper established four kinds of 
neural network model and they use three characteristic indexes to compare including the 
mean absolute percentage error (MAPE), root mean square error (RMSE) and mean absolute 
error (MAE) [34,35]. The expressions of each evaluation index are as follows: 

1

ˆ-1 n
i i

i i

y y
MAPE

n y=

= ∑                           (12) 
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i

MAE y y
n =
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where iy and ˆiy represent the actual value and the predicted value respectively, and n 

represents the number of test samples. 

4. Simulation Experiment 

All the codes in this experiment are written on the MATLAB R2014a software platform, and 
the PC parameters for compilation and operation are: Intel(R) Core(TM)i5-4460 CPU 
@3.20GHz, RAM 8.00GB, 64-bit Windows10 operating system. 
 

4.1 Data Collection and Processing 

In this paper, the experimental data is collected from the tomato sunlight greenhouse of 
Xiaotangshan National Precision Agriculture Research and Demonstration Base in 
Changping District of Beijing (40o10′43′′N, 116o26′39′′W) by installing of various sensors, 
such as soil temperature and humidity sensor, air temperature and humidity sensor, solar 
radiation sensor, and etc. The test greenhouse is 29m in length and 8m in width, and the 
experiment area is 5m in length and 1.4m in width. Two rows of tomatoes are planted in each 
zone. The cultivation method is to cover the plants with a row spacing of 60cm and a spacing 
of 35cm. The 60cm high PVC plates are used for isolation between the communities. The 
test tomato variety is xianke 8. The collection time is from March 21 to July 18, 2016. The 
growth period of tomatoes is divided into germination period (March 21 to March 27), 
seedling period (March 28 - April 27), flowering and fruit-setting period (April 28 - June 2nd) 
and mature picking period (June 3 - July 18). 

Based on the recommendations of relevant researchers and the study of relevant literatures, 
in view of the analysis of the irrigation data and the influence degree of the relevant factors 
on greenhouse tomatoes, we choose six input values as the index of evaluation and 
forecasting model of index system which contains the growth period, inside solar radiation, 
the soil humidity in 20cm depth currently, soil temperature in 10cm depth currently, inside 
air humidity and inside air temperature. The output value is irrigation volume. The daily 
average value of inside solar radiation during the experiment is shown in Fig. 3. When the 
weather is cloudy, the daily average inside solar radiation is low. The daily average relative 
humidity of soil and air during the experiment is presented in Fig. 4. the daily average value 
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of soil and air temperature is shown in Fig. 5. The calculated results of daily ETe of single 
tomato are shown in Fig. 6 which are calculated by the local climatic data and formula (7). 
The water requirement of the tomato plants is small at the germination stage, and the growth 
of the plants during the germination stage and the seedling stage is still relatively slow. The 
branches and leaves are not luxuriant enough, and their water requirement strength is still 
relatively small. In the fruit-setting and full fruit period, due to the dense foliage and the 
transfer of tomato from plant growth to reproductive growth, the water requirement increases 
[11]. The evapotranspiration of tomatoes increased at first and then decreased, and the 
maximum evapotranspiration of the tomatoes plants occurred in fruit setting period (highest 
on May 21). With the growth of tomatoes, the temperature and humidity of soil and air in the 
greenhouse rises fluctuatingly. Due to the instability of the spring climate, the temperature 
fluctuates greatly during the seedling period and the humidity is low. After 40 days of tomato 
colonization, the temperature and humidity increased significantly. After 100 days of tomato 
colonization, both temperature and humidity fluctuate greatly. This is related to factors such 
as the opening of the greenhouse vents. 

In fuzzy neural network learning, because the activation function of neurons is bounded 
function, the input and output vectors need to be normalized processing before the training 
and prediction. The formatting formula is as follows: 

min max miny ( ) / ( )x x x x= − −                       (15) 

where y is the result of the formatting process, x is the original data, xmin is the minimum 
value of the data set, and xmax is the maximum value of the data set. 
 

 
Fig. 3. The daily average inside solar radiation during the experiment 
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Fig. 4. The daily average relative humidity of soil and air during the experiment 

 
 

 
Fig. 5. The daily average temperature of soil and air during the experiment 
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Fig. 6. The daily ETe of single tomato during the experiment 
 
 

4.2 Parameter Setting of The Algorithm 

500 sets of sample data were collected and the accuracy of the trained neural network model 
was verified by a 5-fold cross validation method. The sample data set is randomly divided 
into five parts, of which four are used as a training data set and one is used as a test data set. 
The process is repeated until all five data sets have one time as a test data set. Finally, the 
average of five prediction results is used as an estimate of the accuracy of the algorithm. The 
genetic algorithm uses the random problem hypothesis set to evaluate the individual 
according to the fitness function. The improved genetic algorithm simulates the phenomenon 
of selection, crossover, and mutation in the genetic process, and combines the constraint 
operator and the update operator to optimize the individuals. The genetic algorithm 
optimizes the initial weights and thresholds of the T-S fuzzy network, and then uses the T-S 
fuzzy neural network prediction model to perform local optimization.  

In the evolution process of the genetic algorithm, the volume of population is 20, the 
maximum evolutionary generation is 40, the crossover probability is 0.5, and the mutation 
probability is 0.2. The parameters of the T-S fuzzy neural network are as follows: the number 
of input layer nodes is 6, the number of logic reasoning layer nodes is 12, and the number of 
output layer nodes is 1. MAPE, RMSE and MAE are selected as the evaluation index of the 
model performance. 
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4.3 Simulation Results and Analysis 

Based on the data it trained the established GA-TSFNN, TSFNN [14], BPNN [15] and 
GA-BPNN [16]. According to the differential of the actual output value and the desired 
output value, it adjusted the positive and negative weights of the corresponding input 
variables. If the actual output value is greater than the desired output, the weight of all 
connections with positive input is reduced and the weight of all connections with negative 
output is increased. On the contrary, if the actual output value is smaller than the desired 
output, the weight of all connections with positive input is increased and the values of all 
connections with negative output is reduced.  

Fig. 7 shows the training results of the fitness value of the four neural network algorithms. 
The initial fitness value of GA-TSFNN algorithm is approximately 0.25, and then the fitness 
value rises rapidly. When the number of iterations is about 15, it tends to be flat, reaching a 
stable value of about 0.7. The initial fitness value of the TSFNN algorithm is about 0.24, 
which then rises in the tortuosity, reaches a peak value of 0.58 approximately 25 iterations, 
then gradually decreases, and tends to stabilize at the 34 iterations, reaching 0.48. The initial 
value of fitness value of BPNN algorithm is about 0.23, and then it rises in the tortuosity. 
When the number of iterations is 20, the fitness value reaches a peak value of 0.52, and then 
tends to stabilize at the 31 iterations, reaching 0.43. The initial value of fitness value of 
GA-BPNN algorithm is about 0.24, and then it rises in the tortuosity. When the number of 
iterations is 18, the fitness value reaches a peak value of 0.6, and then it continues to 
fluctuate and fluctuate in twists and turns. 

The fitness values of the four algorithms are all around 0.25 at the beginning. Since the 
number of iterations for taking the fitness peak is less than 25, it is reasonable to take 40 
iterations. The TSFNN algorithm has premature convergence because there is no adaptive 
change of crossover operator and mutation operator. Since the BPNN algorithm does not 
introduce an optimization algorithm, it is easy to achieve local convergence and low fitness. 
Due to not introducing the genetic diversity function of a single adaptive mutation genetic 
strategy, the fitness value of GA-BPNN algorithm constantly fluctuates, and the population 
evolution process has a retrogression, therefore it is unable to achieve the optimal solution. 
The fitness value of GA-TSFNN algorithm converges quickly, and the fitness value is 
improved from below 0.6 to 0.7. Therefore, the training result is better. 
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Fig. 7. The fitness curve of the four algorithms 

 
According to the sample data, the paper uses 5-fold cross validation to verify the accuracy 

of the algorithms. the irrigation volume of the four algorithms after training is predicted. The 
one experiment results of comparisons between the actual values and predictive values of the 
GA-TSFNN, TSFNN, BPNN and GA-BPNN algorithms are shown in Fig. 8, Fig. 9, Fig. 10 
and Fig. 11, respectively. The error comparisons of the irrigation volume among the four 
algorithms is shown in Fig. 12. It can be seen from the Fig. 12 that the error of GA-TSFNN 
algorithm is about 0.1, the error of TSFNN algorithm is approximately 0.25, the error of 
BPNN algorithm is approximately 0.4, and the error of GA-BPNN algorithm is 
approximately 0.3. Therefore, the GA-TSFNN algorithm proposed in this paper is smaller 
error than TSFNN, BPNN and GA-BPNN algorithm within the allowable range and the 
prediction effect is better. 

 
Fig. 8. The comparisons of the irrigation volume between the actual value and predictive value of 

GA-TSFNN 
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Fig. 9. The comparisons of the irrigation volume between the actual value and predictive value of 

TSFNN 
 

 
Fig. 10. The comparisons of the irrigation volume between the actual value and predictive value of 

BPNN 
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Fig. 11. The comparisons of the irrigation volume between the actual value and predictive value of 
GA-BPNN 

 
Fig. 12. The error comparisons of the irrigation volume among the four algorithms 

 
The average comparisons of five tests for evaluation indexes among the four algorithms 

are shown in Fig. 13. It can be seen that the values of MAPE, RRMSE and MAE of 
GA-TSFNN are 0.0358, 0.1086 and 0.0803, respectively, and the values of MAPE, RRMSE 
and MAE of TSFNN are 0.0651, 0.1252 and 0.1033, respectively. The values of MAPE, 
RRMSE and MAE of BPNN are 0.0583, 0.1426 and 0.1297, respectively. The values of 
MAPE, RRMSE and MAE of GA-BPNN are 0.0469, 0.1397 and 0.1135, respectively. 
Compared with the TSFNN, the values of GA-TSFNN increased 45.0%, 13.3% and 22.3% 
respectively in MAPE, RMSE and MAE. Compared with BPNN, the values of GA-TSFNN 
improved 38.6%, 23.8% and 38.1% respectively in MAPE, RMSE and MAE. Compared 
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with GA-BPNN, the values of GA-TSFNN improved 23.7%, 22.3% and 29.3% respectively 
in MAPE, RMSE and MAE. Thus, compared with TSFNN, BPNN and GA-BPNN models, 
the GA-TSFNN has the smallest values of MAPE, RMSE and MAE, and the fitting effect is 
better than TSFNN, BPNN and GA-BPNN models. The GA-TSFNN model improved on 
forecasting accuracy significantly and it can predict well real-time irrigation volume for 
greenhouse tomatoes. 

 
Fig. 13. The average comparisons of five tests for the evaluation indexes among the four algorithms 

5. Conclusion 

In this paper, a water-saving irrigation decision-making model for greenhouse tomatoes 
based on genetic optimization T-S fuzzy neural network named GA-TSFNN is proposed. We 
have improved the GA algorithm by combining the constraint operator and update operator 
originated from KH algorithm, and we also have optimized the initial weights and thresholds 
of the TS fuzzy neural network using the improved genetic algorithm. In addition, on the 
basis of the real data set, we have evaluated the accuracy of the GA-TSFNN by simulating 
and predicting the irrigation volume of greenhouse tomatoes. The results show that 
compared with the TSFNN, BPNN and GA-BPNN algorithms, GA-TSFNN can be used to 
predict the water-saving irrigation volume of greenhouse tomatoes, which can obtain better 
forecasting accuracy and guide irrigation decisions for greenhouse tomatoes. This algorithm 
has advantages of self-learning ability and strong knowledge expression ability which can be 
modified constantly during neural network training and testing data. It improves the global 
search ability, convergence accuracy and speed of the algorithm to some extent. 

For future studies, we will improve current research from following several aspects. First 
of all, the influence of the GA-TSFNN parameters on convergence and performance can be 
carefully analyzed and investigated in order to achieve the GA-TSFNN optimization. 
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Secondly, constraint operators of the GA-TSFNN should be further refined. Finally, other 
optimization algorithms can be considered to optimize the fuzzy neural network such as an 
improved krill herd algorithm [7,25,26,30], cuckoo search algorithm [36] and firefly 
algorithm [37]. 
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