• Title/Summary/Keyword: the number of coil-turn

Search Result 27, Processing Time 0.024 seconds

The Calculation of Inductance to verify the Parameters in Interior Permanent Magnet Motor (매입형 영구자석 전동기의 파라미터 검증을 위한 인덕턴스 산정)

  • Lee, Suk-Hee;Lee, Sang-Ho;Bahn, Ji-Hyoung;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.783-784
    • /
    • 2006
  • In case of a difference exist between the experimental value and estimated value of back-emf, there can be a difference of turn number or residual flux density of permanent maget of the motor. In order to presume the turn number, the average length for each coil is used to calculate the resistance. However in producing the motor, doc to the tension of coil, the outer diameter of coil becomes smaller, and then the resistance estimated by average length for each coil is not correct. Therefore in this paper, through the comparison of experiment value and estimated value of inductance, a method of presuming the turn number and PM's residual flux density of an IPM motor is presented. The inductance of IPM motor changes with the rotor position, therefore the rotor part is taken out and then the inductance in open circuit condition is measured. In the analytical calculation, 3D FEM(Finite Element Method) is used, which can consider the leakage flux of end turns in frinzing effect.

  • PDF

The Fabrication and Measurement of Air Core Inductor (공심인덕터의 제조 및 특성평가)

  • Jeong, S.J.;Song, Y.S.;Kim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1479-1481
    • /
    • 1996
  • The Purpose of this paper is to produce air core inductor and measure its electrical properties for high frequency. Especially we focused attention on the effect of geometrical parameters such as coil width, distance between coils, turn number. In addition, the influence of film morphology at inductor was investigated. Increase of coil width and decrease of turn number resulted in promotion of electric properties.

  • PDF

Study of Shorted-turn for Cylindrical Synchronous Generator Rotor (원통형 동기발전기 회전자의 층간단락에 관한 연구)

  • Kim, Young-Jun;Kim, Jang-Mok;Lee, Sang-Hyuk;Ahn, Jin-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.52-56
    • /
    • 2006
  • This paper describes the methods for the detection of shorted-turn in the rotor of a cylindrical synchronous generator. A search coil is installed in the air-gap to detect the shorted-turn. The occurrence of a fault in the rotor winding results in a decrease of the induced voltages in the stator. And the magnitude of the rotor flux can be estimated by using the search coil and the estimated stator voltages respectively. And the magnitude of the estimated rotor flux is used for discriminating the rotor windings short or not by detecting the magnitude of the rotor flux. The method using a search coil located in the air-gap can detect not only the occurrence of a turn fault but also its position in the rotor winding. But the method using the estimated stator voltages gives the magnitude of the rotor flux, and only the number of a short-turn.

Natural Convection Heat Transfer of an Inclined Helical Coil in a Duct (기울어진 덕트 내 헬리컬 코일의 자연대류 열전달)

  • Park, Joo-Hyun;Chung, Bum-Jin
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.13-20
    • /
    • 2014
  • The natural convection heat transfers of a helical coil in a duct were measured experimentally varying the inclination. To achieve high Rayleigh number, mass transfer experiments instead of heat transfer experiments were performed based upon the analogy. The $Ra_D$ was fixed to $4.55{\times}10^6$. The turn numbers were 1~10. the pitch to diameter ratio were 1.3~5, and the inclination of the helical coil $0^{\circ}{\sim}90^{\circ}$. The measured $Nu_D$ for a single turn of the helical coil was very close to that from McAdams heat transfer correlation for a horizontal cylinder. The heat transfers of the helical coil were varied by the pith, number of turns, and duct height in a complex manner showing the velocity, chimney, and pre-heating effects. The results of the study contributes to the phenomenological analyses of the natural convection heat transfer of a compact heat exchanger.

Current Limiting Characteristics of Improved Flux-Lock Type SFCL According to Winding Direction of Coil 2 and Variable Number of Coil 1 and Coil 2 (개선된 자속구속형의 2차 측 권선 방향과 1차 권선수와 2차 권선수의 변화에 따른 사고전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.714-717
    • /
    • 2010
  • The improved flux-lock type superconducting fault current limiter (SFCL) is composed of a series transformer and superconducting unit of the yttrium-barium-copper-oxide (YBCO) coated conductor. In this paper, we investigated current limiting characteristics through winding direction of coil 2 and variable number of coil 1 and coil 2 in improved flux-lock type SFCL. The better fault current characteristics and the burden of YBCO coated conductor can be confirmed from the experimental result in the higher turn ratio of coil 1 and coil 2 in the additive conditions. In case of subtractive condition, we can confirm a similar result in the same case of experimental conditions. but the burden of YBCO coated conductor has been increased from an increase in winding numbers of coil 2.

Coil Design Scheme using Single-Turn FEM Simulation for Efficiency Optimization of Inductive Power Transfer System (단일 권선 FEM 시뮬레이션을 통한 자기유도형 무선전력전송 코일의 효율 최적화 설계)

  • Seung-Ha, Ryu;Chanh-Tin, Truong;Sung-Jin, Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.471-480
    • /
    • 2022
  • Inductive power transfer (IPT) is an attractive power transmission solution that is already used in many applications. In the IPT system, optimal coil design is essential to achieve high power efficiency, but the effective design method is yet to be investigated. The inductance formula and finite element method (FEM) are popular means to link the coil geometric parameters and circuit parameters; however, the former lacks generality and accuracy, and the latter consumes much computation time. This study proposes a novel coil design method to achieve speed and generality without much loss of accuracy. By introducing one-turn permeance simulation in each FEM phase combined with curve fitting and optimization by MATLAB in the efficiency calculation phase, the iteration number of FEM can be considerably reduced, and the generality can be retained. The proposed method is verified through a 100 W IPT system experiment.

The Dielectric Characteristics of Turn-to-Turn Insulation for DC Reactor Type HTSFCL (DC reactor type 고온호전도 한류기의 턴간 절연 특성)

  • 백승명;정종만;이창화;류엔반둥;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1299-1304
    • /
    • 2003
  • Fault current limiters (FCL) are extensively needed to suppress fault currents, especially for trunk power systems heavily connected to high voltage/large current transmission lines. Due to its ideal electrical behavior, high-temperature superconductor fault current limiter (HTSFCL) becomes one of the most important developing trends of limiters in power system. This paper describes the result of an investigation of the dielectric characteristics of turn-to-turn insulation for pancake and solenoid type reactor coil in liquid nitrogen. The influence of thickness in a variety length, on AC, DC and impulse surface flashover has been investigated. Also, the relationships between the number of turn and breakdown characteristics were clarified. The information gathered in this test series should be helpful in the design of liquid nitrogen filled DC reactor type HTSFCL.

Design Methodology of 500 W Wireless Power Transfer Converter for High Power Transfer Efficiency (500 W 급 무선전력전송 컨버터의 고효율 설계 방법)

  • Kim, Mina;Park, Hwapyeong;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 2016
  • The design methodology of an adequate input voltage and magnetizing inductance to minimize reactive power is suggested to design a wireless power transfer (WPT) converter for high-power transfer efficiency. To increase the magnetizing inductance, the turn number of the WPT coil is increased, thus causing high parasitic resistance in the WPT coil. Moreover, the high coil resistance produces high conduction loss in the transfer and receive coils. Therefore, the analysis of conduction loss is used in the design of the WPT coil and the operating point of the WPT converter. To verify the proposed design methodology, the mathematical analysis of the conduction loss is presented by experimental results.

A miniaturized turn-counting sensor using geomagnetism for small-caliber ammunition fuzes (지구자기장을 이용한 소구경 탄약 신관용 소형 회전수 계수 센서)

  • Yoon, Sang-Hee;Lee, Seok-Woo;Lee, Young-Ho;Oh, Jong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • This paper presents a miniaturized turn-counting sensor (TCS) where the geomagnetism and high-rpm rotation of ammunition are used to detect the turn number of ammunition for applications to small-caliber turn-counting fuzes. The TCS, composed of cores and a coil, has a robust structure with no moving part for increasing the shock survivability in the gunfire environments of ${\sim}30,000$ g's. The TCS is designed on the basis of the simulation results of an electromagnetic analysis tool, $Maxwell^{(R)}$3D. In experimental study, the static TCS test using a solenoid-coil apparatus and the dynamic TCS test (firing test) have been made. The presented TCS has shown that the induction voltage of $6.5{\;}mV_{P-P}$ is generated at the magnetic flux density of 0.05 mT and the rotational velocity of 30,000 rpm. From the measured signal, the TCS has shown the SNR of 44.0 dB, the nonlinearity of 0.59 % and the frequency-normalized sensitivity of $0.26{\pm}0.01{\;}V/T{\cdot}Hz$ in the temperature range of $-30{\sim}+43^{\circ}C$. Firing test has shown that the TCS can be used as a turn-counting sensor for small-caliber ammunition, verifying the shock survivability of TCS in high-g environments.

Turn-to-Turn Dielectric Characteristics of Coils for HTSFCL (고온초전도 한류기용 코일의 턴간 절연 특성)

  • Baek, Seung-Myeong;Joung, Jong-Man;Lee, Chang-Hwa;Nguyen, Van Dung;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.15-18
    • /
    • 2003
  • Fault current limiters (FCL) are extensively needed to suppress fault currents, especially for trunk power systems heavily connected to high voltage/large current transmission lines. Due to its ideal electrical behavior, high-temperature superconductor fault current limiter (HTSFCL) becomes one of the most important developing trends of limiters in power system. This paper describes the result of an investigation of the dielectric characteristics of turn-to-turn insulation for pancake and solenoid type reactor coil in liquid nitrogen. The influence of thickness in a variety length, on AC, DC and impulse surface flashover has been investigated. Also, the relationships between the number of turn and breakdown characteristics were clarified. The information gathered in this test series should be helpful in the design of liquid nitrogen filled DC reactor type HTSFCL.

  • PDF