DOI QR코드

DOI QR Code

A miniaturized turn-counting sensor using geomagnetism for small-caliber ammunition fuzes

지구자기장을 이용한 소구경 탄약 신관용 소형 회전수 계수 센서

  • Yoon, Sang-Hee (Fuze Laboratory, Agency for Defense Development) ;
  • Lee, Seok-Woo (Fuze Laboratory, Agency for Defense Development) ;
  • Lee, Young-Ho (Fuze Laboratory, Agency for Defense Development) ;
  • Oh, Jong-Soo (Fuze Laboratory, Agency for Defense Development)
  • 윤상희 (국방과학연구소 신관팀) ;
  • 이석우 (국방과학연구소 신관팀) ;
  • 이영호 (국방과학연구소 신관팀) ;
  • 오종수 (국방과학연구소 신관팀)
  • Published : 2007.01.31

Abstract

This paper presents a miniaturized turn-counting sensor (TCS) where the geomagnetism and high-rpm rotation of ammunition are used to detect the turn number of ammunition for applications to small-caliber turn-counting fuzes. The TCS, composed of cores and a coil, has a robust structure with no moving part for increasing the shock survivability in the gunfire environments of ${\sim}30,000$ g's. The TCS is designed on the basis of the simulation results of an electromagnetic analysis tool, $Maxwell^{(R)}$3D. In experimental study, the static TCS test using a solenoid-coil apparatus and the dynamic TCS test (firing test) have been made. The presented TCS has shown that the induction voltage of $6.5{\;}mV_{P-P}$ is generated at the magnetic flux density of 0.05 mT and the rotational velocity of 30,000 rpm. From the measured signal, the TCS has shown the SNR of 44.0 dB, the nonlinearity of 0.59 % and the frequency-normalized sensitivity of $0.26{\pm}0.01{\;}V/T{\cdot}Hz$ in the temperature range of $-30{\sim}+43^{\circ}C$. Firing test has shown that the TCS can be used as a turn-counting sensor for small-caliber ammunition, verifying the shock survivability of TCS in high-g environments.

Keywords

References

  1. 윤상희, 이영호, 오종수, 탁연경, '소구경 탄약의 회전수 측정을 위한 자기유도센서의 소형화 설계,' 2005년도 한국센서학회 종합학술대회 논문집, pp. 40-44, 대전, 2005
  2. A. Buckley and P. H. Freymond, '30 mm air burst munition ABM', Proceedings of the 35th NDIA Annual Gun and Ammunition Symposium, Williamsburg, USA, 2000
  3. J. C. Timmerman, 'Air bursting munitions-a systems perspective', Proceedings of the 36th NDIA Annual Gun and Ammunition Symposium, San Diego, USA, 2001
  4. R. E. Elmore, HDL Yaw Sonde Instrumentation, HDL-TM-71-19, U.S. Army Material Command, Washington, D.C., pp. 8-12, 1971
  5. ADIS16100 ${\pm}$300 $^o$/sec Yaw Rate Gyro with SPI Interjace, Analog Devices, Norwood, pp. 1-16, 2006 (available at www.analog.com)
  6. 이석우, 윤상희, 오종수, '회전신호 측정장치 개발', 국방과학연구소, 대전, pp. 1-3, 2006
  7. 최원열, 황준식, 최상언, 'PCB 다층 적층기술을 이용한 마이크로 플럭스 게이트 자기센서', 센서학회지, 제12권, 제2호, pp. 72-78, 2003
  8. D. J. Adelerhof and W. Geven, 'New position detectors based on AMR sensors', Sensors and Actuators A-Physical, vol. 85, pp. 48-53, 2000 https://doi.org/10.1016/S0924-4247(00)00341-1
  9. 김청월, 구본주, 김종성, '자기 임피던스 센서를 이용한 맥박 측정 장치', 센서학회지, 제15권, 제2호, pp. 77-83, 2006 https://doi.org/10.5369/JSST.2006.15.2.077
  10. Test Method Standard for Environmental Engineering Considerations and Laboratory Tests, MIL-STD810E, U.S. Department of Defense, Washington, D.C., pp. 501.3.1-13, 1989
  11. P. Ripka, Magnetic Sensors and Magnetometers, Artech House, Norwood, pp. 57-64, 2001
  12. S.-H Yoon, J.-S. Oh, Y-H. Lee, and S.-W. Lee, 'Miniaturized Inertia Generators as Power Supplies for Small-Caliber Fuzes', IEEE Transactions on Magnetics, vol. 41, pp. 2300-2306, 2005 https://doi.org/10.1109/TMAG.2005.851863
  13. C. W. T. McLyman, Transformer and Inductor Design Handbook, Marcel Dekker inc., New York, pp. 200-203, 1978