• Title/Summary/Keyword: the Pleistocene

Search Result 159, Processing Time 0.02 seconds

The Geomorphological Development of Coastal Terraces at Jigyeong-Ri, the Areal Boundary between Gyeongju- and Ulsan City on the Southeast Coast of Korea (한국 남동해안 경주-울산 경계지역 지경리 일대 해안단굴 지형발달)

  • 황상일;윤순옥;박한산
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.4
    • /
    • pp.490-504
    • /
    • 2003
  • The existence of coastal terraces, HH(High higher) surfaces found at Gampo of southeast coast and at Jeongdongjin of the central east coast were confirmed at Jjgyeong-Ri, the areal border between Gyeongjuand Ulsan city on the southeast coast of Korea Peninsula. Especially this study reports HH JK-surface located on the 155m a.s.l, which is the highest altitude among the ancient shorelines of the coastal terraces in Korea. The HH surfaces on the study area are classified into HH JK at 155m, HH I at 140m and HH II at 115m, and each formation stage is related to MIS 17(720∼690ka BP), MIS 15(630∼560ka BP) and MIS 13(510∼480ka BP) respectively. The HH-surfaces remain to be larger than those of H- and L-surfaces. The reason is caused by the unique factors of the coastal geology and morphology on the study area during the formation stage. And also the areal difference by the magnitude of upheaval doesn't exist from north to south because the altitude system of ancient shoreline on each coastal terrace is same along the east coast. The upheaval rate of the eastern coastal areas was measured in the relation to the ancient shoreline and formation stage among the coastal terraces such as HH JK-, HH I-, HH II, H I- and H II surface, and was almost same as 0.23mm/y.

The Vegetational and Environmental History of the Pre-Holocene Period in the Korean Peninsula (한반도 식생 및 환경변천사(홀로세 이전 시대를 중심으로))

  • Kong, Woo-Seok
    • The Korean Journal of Quaternary Research
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1992
  • The reconstruction of the vegetational and environmental history of the Korean peninsula by the use of various fossil floral data from the Carboniferous period to the Pre-Holocene is reviewed. Though the oldest plant fossil in Korea (Neuropteris) dates back to the Carboniferous period, the first appearance of many of the present-day floristic genera indeed dates back to the Oligocene (c. 40 to 20 million years B.P.), and includes many thermophilous genera. The presence of thermophilous genera in the Oligocene at up to four degrees north of their present distributional limits implies that the climate of the Oligocene was warmer than that of today. The occurrence of similar thermophilous floristic element at up to six degrees north of their present range during the Middle Miocene suggests a maximum northward expansion of warmth-loving evergreen broadleaved vegetation for, recent Korean vegetation history. The continued occurrence of numerous present-day genera since the Oligocene period indicates a long-term stability of Korean vegetation, along with minor fluctuations within it. The admixture of evergreen coniferous plants and deciduous breadleaved plants, however, indicates a probable temperate climate for much of the Middle Pleistocene. There are couple of evidences which are indicative of an early-stage anthropogenic disturbance of natural vegetation during the Middle Pleistocene of Korea. The presence of cold-episodes during the Upper Pleistocene caused a general expansion of deciduous plants and cryophilous evergreen coniferous, plants. It is likely that the maximum southward expansion of cryophilous arctic-alpine and alpine floras in Korea occured during the penultimate glacial period. The disappearance of some cryophilous genera from 10,000 years B.P. marks the continued climatic amelioration since then, along with minor climatic fluctuations during the Holocene period.

  • PDF

Reconstruction of Changes in Eolian Particle Deposition Across the Mid-Pleistocene Transition in the Central Part of the North Pacific (중기 플라이스토세 전이기 전후 북태평양 중앙 해역 퇴적물에 기록된 풍성 퇴적물 입자 퇴적 양상 변화 복원)

  • Lee, Sojung;Seo, Inah;Hyeong, Kiseong
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.275-288
    • /
    • 2019
  • We investigated flux, grain size distribution, Nd-Sr isotope composition, mineral composition, and trace metal composition (REEs and Sc) of inorganic silicate fraction (ISF, mainly Asian dust with an unrestricted amount of volcanic materials) deposited during 600~1000 ka across the Mid-Pleistocene Transition at core NPGP 1401-2A (32°01'N, 178°59'E, 5205m) taken from the central part of the North Pacific. Our results reveal about a 2-fold increase in ISF flux after 800 ka, which is associated with an increase in La/Sc and a decrease in mean grain size. Asian dusts are finer than volcanic materials and La/Sc increases with the enhanced contribution of Asian dusts. Thus, increased flux after 800 ka can be explained by the increased contribution of Asian dusts relative to volcanic materials, likely due to an intensified Westerly Jet (WJ) and the drying of the Asian continent after the MPT. Mean grain size of ISF varies systematically in relation to glacial-interglacial cycles with a decrease during glacial stages, which is consistent with the previous results in the study area. Such a cyclical pattern is also attributed to the increase in the relative contribution of Asian dusts over volcanic components in glacial stages due to intensified WJ and drying of the Asian continent. Thus, it can be concluded that climate changes that had occurred across the MPT were similar to those of interglacial to glacial transitions at least in terms of the dust budget. Different from the Shatsky Rise, however, compositional changes associated with glacial-interglacial mean grain size fluctuations are not observed in Nd-Sr isotope ratios and trace element composition in our study of the Hess Rise. This may be attributed to the location of the study site far (> 4,000 km) from the volcanic sources. The volcanic component at the study site comprises less than 10% and varies within 3% over glacial-interglacial cycles. Such a small variation was not enough to imprint geochemical signals.

Review on Marine Terraces of the East Sea Coast, South Korea : Gangreung - Busan (강릉-부산 간 동해안 해안단구 검토)

  • Choi, Sung-Ja
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.409-425
    • /
    • 2019
  • Marine terraces, a step-like landform, are important geologic markers that provide tectonic information during the Quaternary Period. Marine terraces are well developed along all coastlines(East, West, and South) of the Korean Peninsula, those along the East coastline are the most distinctive. The marine terraces of the East coastline are classified into 4-6 flights that are several meters or several tens of meters above the present sea level. It is believed that these terraces, except for the lowest one, were formed in the middle Pleistocene. In the base of the OSL age dating results and Blake excursion events of magnetostratigraphy, the $2^{nd}$ and $3^{rd}$ terraces are correlated to the last interglacial stage. Considering the marine terraces linked to a sea-level curve of the Pleistocene, it is thought that regional tectonic movements have uplifted the East coastal area since the middle Pleistocene. Besides, former shorelines of each terrace have varied elevations from Gangreung to Busan bay, which can be divided into four regions, namely, Gangreung-Yonghanri(I), Homikot-Najung(II), Najung-Bangeojin(III), and Waesung-Busan Bay(IV). The former shorelines of each terrace at both Gangreung-Yonghanri(I) and Najung-Bangeojin(III) are higher than those in the other two regions, due to block movements by regional faults such as the Ocheon Fault or its subsidiaries, the Gampo Lineament and Ulsan Fault. Uplift rate of the East coast ranges from 0.2 m/ky to 0.3 m/ky, but each region shows different uplift rate.

Analysis of Quaternary Sedimentary Environment based on 3D Geological Modeling for Saban-ri, Haeri-myeon, Gochang (고창군 해리면 사반리 일대 3차원 지질모델링을 활용한 제4기 퇴적환경분석)

  • Shin, Haein;Yu, Jaehyung;Bae, Sungji;Yang, Dongyoon;Han, Min
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.291-299
    • /
    • 2016
  • This study examined stratigraphic research containing extreme climate event during Quaternary period in Saban-ri, Haeri-myeon, Gochang by constructing 3D topographic model and 3D geological model. As a result of 3D topographic model and subsurface geological model, the geology of study area accumulated bedrock, Pleistocene series, and Holocene series chronologically. Most of the study area consist of bedrock on basement and Holocene series on upper layer. Additionally, Pleistocene series are presented as lens-shaped deposit on eastern part, and wedge-shaped deposit on northeastern part. Holocene layers consist of sand and clay-silt layer deposited sequentially where implies fluvial deposits on transgression environment. Distinctively, Pleistocene clayey silt layer and Holocene sand layer on eastern are observed as pond shape deposits that are considered as storm-related deposits originated from overwash system caused by extreme paleoclimate.

Late Cenozoic Metallogeny of Southwest Hokkaido, Japan

  • Watanabe, Yasushi
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.3-6
    • /
    • 2003
  • Southwest Hokkaido (Sapporo-Iwanai district) in the Northeast Japan arc (Fig. 1) is one of the best places to test the correlation among tectonic regime, stress field, magmatic style and hydrothermal mineralization. This paper reviews the Miocene to Pleistocene tectonic framework, geology, magmatic style and stress field of southwest Hokkaido, and correlates them with different types of deposits (Kuroko, epithermal base-metal and precious-metal). (omitted)

  • PDF

K-Ar Age Detwermination of a Lava Stalagmite in Manjang Cave Jeju Island Korea

  • Okada, Toshinori;Itaya, Tetsumaru;Sawa, Isao;Hong, Shi-Hwan
    • Journal of the speleological society of Korea
    • /
    • v.42 no.2
    • /
    • pp.17-28
    • /
    • 1995
  • THE K-AR METHOD of age determination is commonly used to date rocks from Pleistocene volcanoes in Japan (e.g. Kaneoka et al. 1980, Itaya et al. 1984, Shimizu et al. 1988, Itaya et al. 1989). However. there are still many problems with K-Ar dating of the young volcanic rocks, as reviewed by Itaya and Nagao (1988).(omitted)

  • PDF

The Origin of Coastal Dunesand in the Chungcheongnam-do (해안사구의 물질 구설과 플라이스토세층 - 충청남도의 해안을 중심으로 -)

  • 강대균
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.4
    • /
    • pp.505-517
    • /
    • 2003
  • The purpose of this paper is to examine the origin of materials of sanddune in the Chungcheongnamdo. The sands consist mainly of quartz with lesser amount of feldspar and other heavy minerals. With the exception of those from the granite, the sands have a very fine texture. Another characteristic of the sand grains is the low degrees of roundness and grading which indicates that the source areas of the material are not far from the accumulating field. The rivers and streams of this region are not effective in transporting sediments for the coastal dunes. It has been recognized that the beaches and sanddunes have recently been receded as a result of the decrease in materials and the devastating actions of the breakers. The degradation process occurs most actively when the spring tides attack the beaches and foredunes. There are strata with red tint along the coastal areas of the Chungcheongnamdo which trace their origin back to the Pleistocene. From the fact that they contain little or no gravels, the strata are believed to have been the sanddunes during the last interglacial period. This fossil dunes provide part of the materials for the development of the present-day sanddunes along the coastal areas of the region.

The Mineralogy and Geochemistry of the Uppermost Sediments of the Lake Hovsgol, North Mongolia : It's Implication to the Paleoenvironmental Changes

  • Tumurhuu, D.;Narantsetseg, Ts.;Ouynchimeg, Ts.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.3-3
    • /
    • 2004
  • One short core with length of 146cm(HB-107, at coordinates of $N51^{\circ}$11'37.5";$E100^{\circ}$24'45.6", from 229m water depth was subject of the present study. The sub-samples of the core were analyzed for the water contents (WC%), biogenic silica, identification of the main phases, grain size distribution, geochemistry and some physical properties of sediment(Wet density and Magnetic susceptibility) with aims of recording palaeo-environmental changes in Northem Mongolia. The evaluation of the geochemical and mineralogical proxies on palaeo-climated and palaeo-environmental changes are based on comparison to the behvior of biogenic silica through core, as later one had been showed itself, as good indicator of the climate and environmental fluctuation. Age model of the investigating core based on previously C 14 dated core HB105 taken from the central part of the Hobsgol Lake and the result had been published elsewhere. The core consists of two litological varieties : upper diatomaceous silt, lower clay. According to the age model the upper diatomaceous silt formed during the Holocene, lower caly-during the late Pleistocene glacial period. The geochemistry and phase identification analysis on the core samples are resulted in determining main minerals that form the bottom sediments and their geochemistry. The main include quartz, felspar, muscovite, clinochlore, amphibole and carbonate phase(dolomite and calcite). Through the core not only occur the relative quantitative changes of the main phases, but also happen that the carbonate phase completely disappear in diatomaceous silt. This is believed to be related to the lake water salinity changes, which occurred during the trassition period from Pleistocene glacial-to the Holocene interglacial. These abrupt changes of the mineralogy have been clearly traced in geochemistry of sediments, specially in calcium concentration, which is high in lower clay and low in upper diatomaceous silt. That means, geochemistry and mineralogy of the bottom sediments can be used as proxy data on palaeo-climate and palaeo-environmental changes.

  • PDF