DOI QR코드

DOI QR Code

Analysis of Quaternary Sedimentary Environment based on 3D Geological Modeling for Saban-ri, Haeri-myeon, Gochang

고창군 해리면 사반리 일대 3차원 지질모델링을 활용한 제4기 퇴적환경분석

  • Shin, Haein (Department of Astronomy, Space Science, & Geology, Chungnam National University) ;
  • Yu, Jaehyung (Department of Geology and Earth Environmental Sciences, Chungnam National University) ;
  • Bae, Sungji (Department of Astronomy, Space Science, & Geology, Chungnam National University) ;
  • Yang, Dongyoon (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Han, Min (Graduate Program, Department of Geography Education, Seoul National University)
  • 신혜인 (충남대학교 우주.지질학과) ;
  • 유재형 (충남대학교 지질환경과학과) ;
  • 배성지 (충남대학교 우주.지질학과) ;
  • 양동윤 (한국지질자원연구원 국토지질연구본부) ;
  • 한민 (서울대학교 대학원 지리교육과)
  • Received : 2016.06.30
  • Accepted : 2016.08.25
  • Published : 2016.08.28

Abstract

This study examined stratigraphic research containing extreme climate event during Quaternary period in Saban-ri, Haeri-myeon, Gochang by constructing 3D topographic model and 3D geological model. As a result of 3D topographic model and subsurface geological model, the geology of study area accumulated bedrock, Pleistocene series, and Holocene series chronologically. Most of the study area consist of bedrock on basement and Holocene series on upper layer. Additionally, Pleistocene series are presented as lens-shaped deposit on eastern part, and wedge-shaped deposit on northeastern part. Holocene layers consist of sand and clay-silt layer deposited sequentially where implies fluvial deposits on transgression environment. Distinctively, Pleistocene clayey silt layer and Holocene sand layer on eastern are observed as pond shape deposits that are considered as storm-related deposits originated from overwash system caused by extreme paleoclimate.

본 연구는 고창군 해리면 사반리에 대해 3차원 지표모델과 3차원 지질모델을 기반으로 고창지역의 제4기 극한 기후에 따른 퇴적기록 분포 특성에 대해 분석하였다. 3차원 지표지질 모델 및 하부지질모델을 구축한 결과, 연구지역의 지질은 기반암, 플라이스토세 퇴적층, 홀로세 퇴적층이 순차적으로 퇴적되었으며, 주로 기저부의 기반암과 상부의 홀로세 퇴적층이 주를 이룬다. 또한 플라이스토세 퇴적층은 연구지역의 동부에 렌즈상의 퇴적층으로, 북동부에 쐐기상의 형태로 관찰된다. 연구지역의 홀로세 퇴적층은 전체적으로 모래층과 점토질 실트층이 순차적으로 퇴적된 지역으로, 이는 해침 환경 당시 퇴적된 하성층으로 사료된다. 특징적으로 연구지역 동부에 분포하는 플라이스토세 점토질 실트층과 홀로세 모래층은 와지 형태로 관측되며 과거 극한기후에 민감하게 영향을 받는 오버워시에 의한 폭풍퇴적물로 사료된다.

Keywords

References

  1. Baek, Y.S., Chun, S.S. and Shin, S.J. (2009) Seasonal variation of sedimentary structures and ichofacies in the Doouri open-coast tidal flat, southwestern Korea. Journal of the Geological Society of Korea, v.45, p.187-208.
  2. Boak, E.H. and Turner, I.L. (2005) Shoreline definition and detection: a review. Journal of Coastal Research, v.21, p.688-703.
  3. Caumon, G., Collon-Drouaillet, P., Le Carlier de Veslud, D., Viseur, S. and Sausse, J. (2009) Surface-Based 3D Modeling of Geological Structures. Mathematical Geosciences 2009, v.41, p.927-945. https://doi.org/10.1007/s11004-009-9244-2
  4. Chough, S.K., Lee, H.J. and Yoon, S.H. (2000) Marine geology of Korean Seas. Elsevier, Amsterdam, 313p.
  5. Davis, R.A. Jr. (1985) Coastal sedimentary environments. Springer-Verger, New York, 716p.
  6. Davis, R.A. Jr. and Fitzgerald, D.M. (2004) Beaches and coasts. Blackwell Science Ltd., Malden, 419p.
  7. Dawson, A.G., Stewart, I. (2007) Tsunami deposits in the geological record. Sedimentary Geology, v.200, p.166-183. https://doi.org/10.1016/j.sedgeo.2007.01.002
  8. Foxgrover, A, (2009) Quantifying the overwash component of barrier island morphodynamics: Onslow Beach, NC
  9. Hobbs, C.H. (2012) The beach book: science of the shore. Columbia University Press, New York, 195p.
  10. Hutchinson, M.F. (1996) A locally adaptive approach to the interpolation of digital elevation models. In Proceedings, Third International Conference/Workshop on Integrating GIS and Environmental Modeling. Santa Barbara, CA: National Center for Geographic Information and Analysis See: http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/hutchinson_michael_dem/local.html.
  11. Hutchinson, M.F. and Gallant, J.C. (2000) Digital elevation models and representation of terrain shape. In: J.P. Wilson and J.C. Gallant (eds) Terrain Analysis. Wiley, New York, p.29-50.
  12. Jorgensen, F., Hoyer, A.S., Sandersen, P.B., He, X. and Foged, N. (2015) Combining 3D geological modelling techniques to address variations in geology, data type and density-An example from Southern Denmark. Computers & Geosciences, v.81, p.53-63. https://doi.org/10.1016/j.cageo.2015.04.010
  13. Kain, C.L., Gomez, C., Hart, D.E., Wassmer, P., Goff, J. and Starheim, C. (2014) Assessing topographic controls on flow direction in washover deposits using measurements of Magnetic Fabric. Marine Geology, v.350, p.16-26. https://doi.org/10.1016/j.margeo.2014.01.010
  14. Kang, S.l., Ryang, W.H. and Chun, S.S. (2015) Characteristics of surface topography variation on the gochang beach, southwestern coast of Korea. Journal of the Korean earth science society, v.36, p.533-542. https://doi.org/10.5467/JKESS.2015.36.6.533
  15. Kang, S.l., Ryang, W.H., Jin, J.H. and Chun, S.S. (2016) Seasonal Variation of Surface Sediments in 2014 on the Gochang Open-Coast Intertidal Flat, Southwestern Korea, Journal of the Korean earth science society, v.37, p.89-106. https://doi.org/10.5467/JKESS.2016.37.2.89
  16. Kim, J.E., Yu, J.H. and Yang, D.Y. (2014) Site Selection for Geologic Records of Extreme Climate Events based on Environmental Change and Topographic Analyses using Paleo Map for Myeongsanimni Coast, South Korea. Economic and Environmental Geology, v.47, p.589-599. https://doi.org/10.9719/EEG.2014.47.6.589
  17. Lee, B.J., Kim, J.C., Kim, Y.B., Cho, D.L., Choi, H.I., Chun, H.Y. and Kim, B.C. (1997) Geologic report of the Gwangju sheet (1:250,000), Korea Institute of geoscience and mineral resources, 82p.
  18. Lee, J.A. Yu, J.H., Park, G.S., Lee, B.H., Kim, I.J. and Heo, C.H. (2015) A Comparative Analysis between 3D Geological Modeling and Magnetic Data of Fe-Mn Ore in Ugii Nuur, Mongolia. Economic and Environmental Geology, v.46, n.4, p.291-300. https://doi.org/10.9719/EEG.2013.46.4.291
  19. Mallet, J.L. (1989) Discrete Smooth Interpolation. ACM Transactions on Graphics, v.8, p.121-144. https://doi.org/10.1145/62054.62057
  20. Mallet, J.L. (2002) Geomodeling. OXFORD University Press, 599p.
  21. Paradigm(R) (2013) SKUA-GOCAD User Guide
  22. Pilkey, O.H., Neal, W.J., Kelley, J.T. and Cooper, J.A.G. (2011) The world's beaches: a global guide to the science of the shoreline. University of California Press, Berkeley, 283p.
  23. Shepard, F.P. (1977) Geological oceanography. Crane, Russak & Company, Inc., New York, 214p.
  24. Wang, P. and Horwitz, M.H. (2007) Erosional and depositional characteristics of regional overwash deposits caused by multiple hurricanes. Sedimentology, v.54, p.545-564. https://doi.org/10.1111/j.1365-3091.2006.00848.x
  25. Yang, B.C., Dalrymple, R.W., Chun, S.S. and Lee, H.J. (2006) Transgressive sedimentation and stratigraphic evolution of a wave-dominated macrotidal coast, western Korea. Marine Geology, v.235, p.35-48. https://doi.org/10.1016/j.margeo.2006.10.003
  26. Yang, D.Y., Kim, J.Y., Nahm, W.H., Ryu, E., Yi, S., Kim, J.C., Lee, J.Y. and Kim, J.K. (2008) Holocene wetland environmental change based on major element concentrations and organic contents from the Cheollipo coast, Korea. Quaternary International, v.176, p.143-155.