DOI QR코드

DOI QR Code

Review on Marine Terraces of the East Sea Coast, South Korea : Gangreung - Busan

강릉-부산 간 동해안 해안단구 검토

  • Choi, Sung-Ja (Geology Division, Korea Institute of Geoscience and Mineral Resources)
  • 최성자 (한국지질자원연구원 국토지질연구본부)
  • Received : 2019.09.05
  • Accepted : 2019.10.16
  • Published : 2019.10.28

Abstract

Marine terraces, a step-like landform, are important geologic markers that provide tectonic information during the Quaternary Period. Marine terraces are well developed along all coastlines(East, West, and South) of the Korean Peninsula, those along the East coastline are the most distinctive. The marine terraces of the East coastline are classified into 4-6 flights that are several meters or several tens of meters above the present sea level. It is believed that these terraces, except for the lowest one, were formed in the middle Pleistocene. In the base of the OSL age dating results and Blake excursion events of magnetostratigraphy, the $2^{nd}$ and $3^{rd}$ terraces are correlated to the last interglacial stage. Considering the marine terraces linked to a sea-level curve of the Pleistocene, it is thought that regional tectonic movements have uplifted the East coastal area since the middle Pleistocene. Besides, former shorelines of each terrace have varied elevations from Gangreung to Busan bay, which can be divided into four regions, namely, Gangreung-Yonghanri(I), Homikot-Najung(II), Najung-Bangeojin(III), and Waesung-Busan Bay(IV). The former shorelines of each terrace at both Gangreung-Yonghanri(I) and Najung-Bangeojin(III) are higher than those in the other two regions, due to block movements by regional faults such as the Ocheon Fault or its subsidiaries, the Gampo Lineament and Ulsan Fault. Uplift rate of the East coast ranges from 0.2 m/ky to 0.3 m/ky, but each region shows different uplift rate.

계단형 평탄지형면인 해안단구는 고해수면을 지시하는 표식지형으로 가까운 지질시대동안 일어났던 지구조운동 정보를 제공하는 지질학적으로 매우 의미 있는 지형이다. 한반도의 동해, 서해 그리고 남해안 모두 해안단구가 발달하고 있으며 그 중 동해안에 가장 잘 발달하고 있다. 동해안의 해안단구는 4-6조로 해발고도 수m 에서 수십m 상위에 발달하고 있다. 이들 중 최하위 단구를 제외한 모든 단구는 중기 플라이스토세 이후에 형성되었고, 특히 OSL 연령과 고지자기 층서의 블래이크 사건(Blake excursion event)에 따르면 2단구와 3단구는 공히 최종 간빙기에 대비된다. 플라이스토세 해수면변동 곡선과 단구의 구정선고도를 서로 대비하여 본다면 동해안에서 중기 플라이스토세 이후부터 중기 홀로세까지 광역적 지구조 운동이 일어났음을 알 수 있다. 또한 강릉에서 부산까지 해안단구의 구정선 고도가 지역별로 상이하며 4개 지역으로 구분할 수 있다: 강릉-용한리(I), 호미곶-나정(II), 나정-방어진(III), 왜성-부산만(IV). 구정선 고도가 지역 간 서로 다르게 발달하고 있는 것은 오천단층 혹은 그의 부수단층, 감포 선구조, 울산단층 등에 의한 지괴운동에 의한 것으로 해석된다. 구정선 고도와 단구 평탄면 형성시기를 상호 함수로 한 동해안의 융기율은 0.2-0.3m/ky 범위 내외이며, 구정선 고도에 따라 융기율은 지역적으로 다르다.

Keywords

References

  1. Choi, J.H., Murray, A.S., Jain, M., Cheong, C.S. and Chang, H.W. (2003a) Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea. Quat. Sci. Rev., v.22, p.407-421. https://doi.org/10.1016/S0277-3791(02)00136-1
  2. Choi, J.H., Murray, A.S., Cheong, C.S., Hong, D.G. and Chang, H.W. (2003b) The resolution of stratigraphic inconsistency in the luminescence ages of marine terrace sediments from Korea. Quat. Sci. Rev., v.22, p.1201-1206. https://doi.org/10.1016/S0277-3791(03)00022-2
  3. Choi, J.H., Kim, J.W., Murray, A.S., Hong, D.G., Chang, H.W. and Cheong, C.S. (2009) OSL dating of marine terrace sediments on the southeastern coast of Korea with implications for Quaternary tectonics. Quat. Int'l, v.199, p.3-14. https://doi.org/10.1016/j.quaint.2008.07.009
  4. Choi, S-G. (1995a) Last intergalcial marine geomorpic surfaces between Gangneung to Muchko in mid-eastern coast of Korean Peninsula. Jour. Korean Geomorph. Assoc., v.2, p.9-20.
  5. Choi, S-G. (1995b) The comparsion and chronology of the lower marine terraces in the mid-easern coast of Korean Peninsula. Jour. Korean Geogr. Soc., v.30, p.103-119.
  6. Choi, S-G. (1996) Chronological study of Late Pleistocene marine terraces around Pohang area, southeastern coast of Korea. Jour. Korean Geomorph. Assoc., v.3, p.29-44.
  7. Choi, S-G. (2016) The estimation of the marine terrace of the late warm period of the last interglacial in the Sajin coast of Yeongdeok, southeastern coast of Korea. Jour. Assoc. Korean Geogr., v.5, p.281-287.
  8. Choi, S-G. (2019) MIS 5e marine terraces and uplift rate since the last interglacial in the Yeongdeok coast of the southeastern Korean Peninsula. Jour. Assoc. Korean Geogr., v.8, p.61-70.
  9. Choi, S-G., Shin, H. and Park, J.H. (2017) A marine terrace correlated to MIS 5e on the basis of pollen analysis at Sanha-dong, Ulsan, southeastern coast of the Korean Peninsula. Jour. Korean Geomorph. Assoc., v.24, p.1-11.
  10. Choi, S-J. (2003) Marine terrace of the Jinha-Ilgwang area, Southeast Korea. Econ. Environ. Geol., v.36, p.232-242.
  11. Choi, S-J. (2004) Marine Terrace of Daebo-Guryongpo-Gampo, SE Korea(II). Econ. Environ. Geol., v.37, p.245-253.
  12. Choi, S-J. (2016) Marine terraces and Quaternary faults in the Homigot and the Guryongpo, SE Korea. Jour. Petrol. Soc. Korea, v.25, p.231-240, https://doi.org/10.7854/JPSK.2016.25.3.231
  13. Choi, S-J. (2018) Review on the relative sea-level changes in the Yellow Sea during the Late Holocene. Econ. Environ. Geol., v.51, p.463-471. https://doi.org/10.9719/EEG.2018.51.5.463
  14. Choi, S-J., Merritts, D.J. and Ota, Y. (2008) Elevations and ages of marine terraces and late Quaternary rock uplift in southeastern Korea. Jour. Geophy. Res., 113, B10404, doi:10.1029/2007JB005260.
  15. Choi, S-J., Jeon, J-S., Choi, J-H., Kim, B., Ryoo, C-R., Hong, D-G. and Chwae, U. (2014) Estimation of possible maximum earthquake magnitude of Quaternary faults in the southern Korean Peninsula. Quat. Int'l, v.344, p.53-63. https://doi.org/10.1016/j.quaint.2014.05.052
  16. Chough, S.K., Lee, H.J. and Yoon, S.H. (2000) Marine Geology of Korean Seas. Elsevier ISBN50438-9, 328p.
  17. Chwae, U., Choi, S-J., Cho, D-L., Lee, Y-J., Ryoo, C-R., Ko, I-S. and Shin, H-M. (2000) Neotectonics. Report, Korea Institute of Geology, Mining and Materials, N2-01-02-A-01, Daejeon, Korea, 603p.
  18. Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Mullere,B., Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M.O., Zoback, M-L. and Zoback, M.D. (2018) The World Stress Map database release 2016:crustal stress pattern across scales. Tectonophysics, v.744, p.484-498. https://doi.org/10.1016/j.tecto.2018.07.007
  19. Heo, S., Choi, J-H. and Hong, D-G. (2014) Revisiting the OSL ages maine terraces at Suryum fault site, Geyongju, South Korea: single grain OSL dating. Jour. Petrol. Soc. Korea, v.23, p.187-195. https://doi.org/10.7854/JPSK.2014.23.3.187
  20. Hong, S.C. (2014) Constraining the depositional age of marine terrace sediments along the eastern coast of Korea using optical dating. Unpublished Ph.D. thesis, Seoul National University, Seoul, 160p.
  21. Hwang, S-I. and Yoon, S-O. (1996) The characteristics of sedimentary facies and the geomorphological development of marine terraces in Kumgok area, Youngdeok County, East coast of Korea. Jour. Geomorph. Assoc. Korea, v.3, p.99-114.
  22. Inoue, D. and W. H. Choi (2006) The activity of the Ulsan Fault system based on marine terrace age study at the southeastern part of Korean Peninsula. CRIEPI Report No. 5012, Cent. Res. Inst. of Electr. Power Industry, Chiba, Japan, 83p.
  23. Jara-Munoz, J. Melnick, D., Brill, D. and Strecker, M.R. (2015) Segmentation of the 2010 Maule Chile earthquake rupture from a joint analysis of uplifted marine terraces and seismic-cycle deformation patterns. Quat. Sci. Rev., v.113, p.171-192. https://doi.org/10.1016/j.quascirev.2015.01.005
  24. Kim, J-W., Chang, H-W., Choi, J-H., Choi, K-H. and Byun, J-M. (2005) The morphological characteristics and geochronological ages of coastal terraces of Heunghae region in northern Pohang City, Korea. Jour. Petrol. Soc. Korea, v.12, p.103-116.
  25. Kim, J-W., Chang, H-W., Choi, K-H., Jun, E., Lee, J., Byun, J-M. and Oh, C. (2006) The morphological characteristics and geochronological ages of coastal area in East Sea. Report of Korea Hydro & Nuclear Power Co. Ltd.
  26. Kim, J-W., Chang, H-W., Choi, J-H., Choi, K-H. and Byun, J-M. (2007) Optically stimulated luminescence dating on the marine terrace deposits of Hujeong-Jukbyeon region in Uljin, Korea. Jour. Korean Geomorph. Assoc., v.14, p.15-27.
  27. Kim, J-Y., Oh, K-C., Yang D.Y. and Choi, W.H. (2008) Stratigraphy, chronology and implied uplift rate of coastal terraces in the southeastern part of Korea. Quat. Int'l, v.183, p.76-42. https://doi.org/10.1016/j.quaint.2007.06.032
  28. Kim, S. (1973) A study of the terraces along the southeastern coast(Bangeojin-Pohang) of the Korean Peninsula. Jour. Geol. Soc. Korea, v.9, p.89-121.
  29. Lee, D.Y. (1987) Stratigraphical research of the Quaternary deposits in the Korean Peninsula. Korean Jour. Quat. Res., v.1, p.3-20.
  30. Lee, S.Y., Seong, Y.B., Kang, H.C. and Yu, B.Y. (2015) Cosmogenic $^{10}Be$ and OSL dating of marine terraces along the central east coast of Korea: spatio-temporal variations in uplift rates. Open Geogr. Jour., v.7, p.28-39. https://doi.org/10.2174/1874923201507010028
  31. Oh, G. (1981) Marine terraces and their tectonic deformation on the coast of the southern part of the Korean Peninsula. Bull. Dept. Geogr., Uni. of Tokyo, n.13, 61p.
  32. Park, C-S., Kihm, Y-H., Nahm, W-H. and Lee, G-R. (2017) Formative age of coastal terraces and uplift rate in the East coast of South Korea. Jour. Korean Geomorph. Assoc., v.24, p.43-65.
  33. Park, E.H., Park, S-C. and Choi, Y-J. (2013) Seismic characteristics of the 2012 Ulsan offshore earthquake sequence. Jour. Geol. Soc. Korea. v.49, p.493-502.
  34. Ree, J.-H., Lee,Y.-J., Rhods, E.D., J., Park, Y., Kwon, S.-T., Chwae, U., Jeon, J.-S. and Lee, B. (2003) Quaternary reactivation of Tertiary faults in the southeastern Korean Peninsula: Age constraint by optically stimulated luminescence dating. Isl. Arc, v.12, p.1-12. https://doi.org/10.1046/j.1440-1738.2003.00372.x
  35. Shim, T. (2006) Paleomagnetism for the terrace along the eastern coast(Youngil Bay) of Korean Peninsula (in Korean with English abstract), Ph.D thesis, Yonsei Univ. at Seoul, Seoul, 85p.
  36. Shin, J.R. and Park K.G. (2016) The paleo-shoreline and formation age of the 1st marine terrace in Heunghae-eup Pohang City, South Korea; Evaluation of the mode and rate of the late Quaternary tectonism(1). Korean Assoc. Reg. Geogr., v.22, p.703-713.
  37. Siddall, M., Chappell, J. and Potter, E.-K. (2007) 7. Eustatic sea level during past interglacials. Develop. Quat. Sci., v.7, p.75-92.
  38. Schnack, E. and Pirazzoli, P. (1990) Quaternary sea-level changes. Palaeogeogr., Palaeoclim., Palaeoecol.(Global and Planetary Change Section), v.82, p.65-68. https://doi.org/10.1016/S0031-0182(12)80019-8
  39. Wagner, G.A. (1998) Age determination of young rocks and artifacts. Springer-Verlag Berlin Heidelberg New York, 466p.
  40. Walker, M. (2008) Quaternary dating methods. John Wiley & Sons, Ltd,, England, 286p.
  41. Yoon, S-O., Hwang, S-I. and Ban, H-K. (2003) Geomorphic development of marine terraces at Jeongdongjin-Daejin area on the East coast, central part of Korean Peninsula. Jour. Korean Geogr. Soc., v.38, p.156-172.