• Title/Summary/Keyword: the Navier's solutions

Search Result 123, Processing Time 0.023 seconds

Numerical analysis for free vibration of functionally graded beams using an original HSDBT

  • Sahouane, Abdelkader;Hadji, Lazreg;Bourada, Mohamed
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • This work presents a free vibration analysis of functionally graded beams by employing an original high order shear deformation theory (HSDBT). This theory use only three unknowns, but it satisfies the stress free boundary conditions on the top and bottom surfaces of the beam without requiring any shear correction factors. The mechanical properties of the beam are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. In order to investigate the free vibration response, the equations of motion for the dynamic analysis are determined via the Hamilton's principle. The Navier solution technique is adopted to derive analytical solutions for simply supported beams. The accuracy and effectiveness of proposed model are verified by comparison with previous research.

Free vibrations of laminated composite plates using a novel four variable refined plate theory

  • Sehoul, Mohammed;Benguediab, Mohamed;Bakora, Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.603-613
    • /
    • 2017
  • In this research, the free vibration response of laminated composite plates is investigated using a novel and simple higher order shear deformation plate theory. The model considers a non-linear distribution of the transverse shear strains, and verifies the zero traction boundary conditions on the surfaces of the plate without introducing shear correction coefficient. The developed kinematic uses undetermined integral terms with only four unknowns. Equations of motion are obtained from the Hamilton's principle and the Navier method is used to determine the closed-form solutions of antisymmetric cross-ply and angle-ply laminates. Numerical examples studied using the present formulation is compared with three-dimensional elasticity solutions and those calculated using the first-order and the other higher-order theories. It can be concluded that the present model is not only accurate but also efficient and simple in studying the free vibration response of laminated composite plates.

Reynolds Number Dependence of Bearing Performance

  • Kim E.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.149-154
    • /
    • 1997
  • Based on the full Navier-Stokes solutions, the thermohydrodynamic performance of a long journal bearing is investigated. A numerical method based on Galerkin's procedure and B-spline test functions has been presented for solving two-dimensional problems involving fluid flow and heat transfer. For numerical stability the artificial compressibility is employed to the conservation of mass. The discretized algebraic equations are solved by Newton's method. Effects of varying the speed of an inner cylinder to load carrying capacity are investigated. The results indicated that the increase of the speed of an inner cylinder has a significant effect on the temperature profile and ultimately on the performance.

  • PDF

Aerodynamic Characteristics for various front shapes of High Speed Train (고속열차의 선두부 형상에 따른 공력특성 변화)

  • Lee S. C.;Kim S. L.;Hur N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.49-54
    • /
    • 1995
  • A numerical analysis on the effect of the front shape on the aerodynamic characteristics of HST model is made, using FVM based general purpose 3D Navier-Stokes eq. solver, TURBO-3D program. Numerical solutions are compared with each case of different front shape for HST model. The result shows a good quantitative aerodynamic characteristic tendencies for variation of front shape of HST. Thus it may be used as a basis in the design of the shape of real HST.

  • PDF

Nonlinear thermal vibration of fluid infiltrated magneto piezo electric variable nonlocal FG nanobeam with voids

  • L. Rubine;R. Selvamani;F. Ebrahimi
    • Coupled systems mechanics
    • /
    • v.13 no.4
    • /
    • pp.337-357
    • /
    • 2024
  • This paper studies, the analysis of nonlinear thermal vibration of fluid-infiltrated FG nanobeam with voids. The effect of nonlinear thermal in a FG ceramic-metal nanobeam is determined using Murnaghan's model. Here the influence of fluids in the pores is investigated using the Skempton coefficient. Hamilton's principle is used to find the equation of motion of functionally graded nanobeam with the effect of refined higher-order state space strain gradient theory (SSSGT). Numerical solutions of the FG nanobeam are employed using Navier's solution. These solutions are validated against the impact of various parameters, including imperfection ratio, fluid viscosity, fluid velocity, amplitude, and piezoelectric strain, on the behavior of the fluid-infiltrated porous FG nanobeam.

Vibration control of laminated composite plates using embedded smart layers

  • Reddy, J.N.;Krishnan, S.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.135-156
    • /
    • 2001
  • Analytical solutions and finite element results of laminated composite plates with smart material layers embedded in them are presented in this study. The third-order plate theory of Reddy is used to study vibration suppression characteristics. The analytical solution for simply supported boundary conditions is based on the Navier solution procedure. The velocity feedback control is used. Parametric effects of the position of the smart material layers, material properties, and control parameters on the suppression time are investigated. It has been found that (a) the minimum vibration suppression time is achieved by placing the smart material layers farthest from the neutral axis, (b) using thinner smart material layers have better vibration attenuation characteristics, and, (c) the vibration suppression time is larger for a lower value of the feedback control coefficient.

NUMERICAL STUDY ON TWO-DIMENSIONAL INCOMPRESSIBLE VISCOUS FLOW BASED ON GRIDLESS METHOD (2차원 비압축성 점성유동에 관한 무격자법 기반의 수치해석)

  • Jeong, S.M.;Park, J.C.;Heo, J.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.93-100
    • /
    • 2009
  • The gridless (or meshfree) methods, such as MPS, SPH, FPM an so forth, are feasible and robust for the problems with moving boundary and/or complicated boundary shapes, because these methods do not need to generate a grid system. In this study, a gridless solver, which is based on the combination of moving least square interpolations on a cloud of points with point collocation for evaluating the derivatives of governing equations, is presented for two-dimensional unsteady incompressible Navier-Stokes problem in the low Reynolds number. A MAC-type algorithm was adopted and the Poission equation for the pressure was solved successively in the moving least square sense. Some typical problems were solved by the presented solver for the validation and the results obtained were compared with analytic solutions and the numerical results by conventional CFD methods, such as a FVM.

Adaptive Triangular Finite Element Method for Compressible Navier - Stokes Flows (삼각형 적응격자 유한요소법을 이용한 압축성 Navier-Stokes 유동의 해석)

  • Im Y. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.88-97
    • /
    • 1996
  • This paper treats an adaptive finite-element method for the viscous compressible flow governed by Navier-Stokes equations in two dimensions. The numerical algorithm is the two-step Taylor-Galerkin mettled using unstructured triangular grids. To increase accuracy and stability, combined moving node method and grid refinement method have been used for grid adaption. Validation of the present algorithm has been made by comparing the present computational results with the existing experimental data and other numerical solutions. Four benchmark problems are solved for demonstration of the present numerical approach. They include a subsonic flow over a flat plate, the Carter flat plate problem, a laminar shock-boundary layer interaction. and finally a laminar flow around NACA0012 airfoil at zero angle of attack and free stream Mach number of 0.85. The results indicates that the present adaptive triangular grid method is accurate and useful for laminar viscous flow calculations.

  • PDF

A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate

  • Sekkal, Mohamed;Fahsi, Bouazza;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.389-401
    • /
    • 2017
  • In this work, a new higher shear deformation theory (HSDT) is developed for the free vibration and buckling of functionally graded (FG) sandwich plates. The proposed theory presents a new displacement field by using undetermined integral terms. Only four unknowns are employed in this theory, which is less than the classical first shear deformation theory (FSDT) and others HSDTs. Equations of motion are obtained via Hamilton's principle. The analytical solutions of FG sandwich plates are determined by employing the Navier method. A good agreement between the computed results and the available solutions of existing HSDTs is found to prove the accuracy of the developed theory.

3D numerical model for wave-induced seabed response around breakwater heads

  • Zhao, H.Y.;Jeng, D.S.;Zhang, Y.;Zhang, J.S.;Zhang, H.J.;Zhang, C.
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.595-611
    • /
    • 2013
  • This paper presents a three-dimensional (3D) integrated numerical model where the wave-induced pore pressures in a porous seabed around breakwater heads were investigated. Unlike previous research, the Navier-Stokes equation is solved with internal wave generation for the flow model, while Biot's dynamic seabed behaviour is considered in the seabed model. With the present model, a parametric study was conducted to examine the effects of wave and soil characteristics and breakwater configuration on the wave-induced pore pressure around breakwater heads. Based on numerical examples, it was found that the wave-induced pore pressures at breakwater heads are greater than that beneath a breakwater. The wave-induced seabed response around breakwater heads become more important with: (i) a longer wave period; (ii) a seabed with higher permeability and degree of saturation; and (iii) larger angle between the incident waves and breakwater. Furthermore, the relative difference of wave-induced pore pressure between fully-dynamic and quasi-static solutions are larger at breakwater heads than that beneath a breakwater.