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ABSTRACT: Based on the full Navier-Stokes solutions, the thermohydrodynamic
performance of a long journal bearing is investigated. A numerical method based on
Galerkin's procedure and B-spline test functions has been presented for solving two-
dimensional problems involving fluid flow and heat transfer. For numerical stability the
artificial compressibility is employed to the conservation of mass. The discretized algebraic
equations are solved by Newton’s method. Effects of varying the speed of an inner cylinder
to load carrying capacity are investigated. The results indicated that the increase of the
speed of an inner cylinder has a significant effect on the temperature profile and ultimately
on the performance.

INTRODUCTION

The essence of classical bearing theory which provides the mathematical theory of
lubrication, is the recognition that the problem has two length scales: the thickness of the
film and its lateral dimension [1]. In classical bearing analysis, the bearing performance is
predicted on the assumption that the viscosity of the fluid is constant and uniform over
the fluid film and that fluid inertia is negligible. These assumptions work well for small,
low speed bearings running on petroleum oil fluids, and in such cases the predictions of
classical theory are in essential agreement with experiments. However, as the system
increases its speed, this assumption is no longer correct [2]. To correct this problem,
several investigators have investigated the bearing performance including fluid inertia
and heat transfer, respectively, The effect of inertia is estimated from a first-order
perturbation solution [3, 4], integral relations [5]. These authors showed that the
contribution from the inertia film forces to the load carrying capacity and the dynamic
reaction forces of journal bearings is quite small. With the full Navier-Stokes equations
keeping the temporal terms for a plane slider bearing, and using a body fitted coordinate
system, Sestieri and Piva [6] analyzed the influence of the inertial forces in steady and
unsteady lubrication films. Hashimoto [7] investigated the effects of fluid inertia on the
performance characteristics of bearings. He derived the momentum and continuity
equations including the full inertia terms throughout the film thickness. Then he applied a
numerical technique combining the control volume integration and the Newton method to
solve equations. It is concluded that the fluid inertia forces have significant effects on the
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static characteristics of the bearings such as the load carrying capacity and the pressure.
However, Hashimoto's analysis is based on the assumption that the shear stress is constant
across the film. This assumption is indefensible, and so the final conclusion is strongly
suspect. Andres, Szeri [8], and Dai et al. [9] solved the Navier-Stokes equations using
Galerkin's method for long cylinders. Dai et al. [9] concluded that in long bearings, fluid
inertia has negligible influence on bearing load capacity over the whole laminar range
of bearing operations, but that bearing stiffness increases linearly with the Reynolds
number. The fluid temperature varies significantly as a result of viscous heat
dissipation in the fluid film and heat transfer to the surroundings, and consequently
effects to the bearing performance. Cope [10], Dowson, Hudson [11], Suganami, Szeri
[12], Ezzat, Rohde [13], and Boncompain et al. [14], using approximate equations, showed
that thermal effects play a significant role in determining the performance of journal
bearings. Most of the results described in this section are solved by approximate equations.
Some authors have made efforts to solve the exact equations directly instead of using the
approximate method, following different linearization approaches. On the other hand, in
this paper the exact equations will be used to obtain an accurate assessment of the effects.

ANALYSIS

A bipolar coordinate system in the representation of the flow field between long,
rotating eccentric cylinders, and cylindrical polar coordinates to analyze heatflow in the
bearing are employed. The details of the geometry are shown in Fig. 1. The
nondimensional governing equations for the fluid flow are
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and for the bearing is
VT, =0. (4)

To nondimensionalize equations (1)-(4), the following dimensioniess variables are
used:
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The dimensionless boundary conditions are
u(0,y)=0, v(0,y) = sinh|a1|, u(L,Lyy=v(l,y)=0 (6)
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In the above equations, the non-dimensional parameters are defined by
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Here R is the Reynolds number, Pr is the Prandtl number, and E is the Eckert number and
T« is the reference (shaft) temperature. The governing equations (1)-(4) are solved by
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Galerkin' method, employing B-spline basis functions. This scheme has already been
employed for eccentric cylinder flows by Dai, Dong & Szeri [9] in the isothermal case
and by Dai, Dong & Szeri [15] in the non-isothermal, constant wall temperature case. in
these instances the pressure was eliminated either by cross-differentiation or by
algebraic means, making for a complicated analysis. Here we simplify the task by
solving directly for the primitive variables {u,v,p, 7T, Tp}. However, for equal interpolation
of velocity and pressure the Galerkin mixed formulation of the steady state Navier-
Stokes problem yields a singular system. To circumvent the Babushka-Brezzi stability
criteria [16], Zinekiewicz & Wu [17] adjoined the artificial compressibility formulation of
the equation of mass conservation to the time-asymptotic form of the Navier-Stokes
equations.

Thus, the conservation equations for momentum and mass in their unsteady
non-dimensional form are as follows:
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Time-discretize (12) as
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On substituting for the velocity from the time-discretized momentum equations

(n+1)

_p»
ciAt

4 = —div® - —Az—tdiv( ANAD ¥

(14)

Steady state is characterized by du/6r=0, dv/0ft=0 in equations (10, 11) and
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the steady state problem are solved:
SfO(u,v,p)=0
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= p™ in equation (14). In consequence, the following systems of equations for
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f®uv,p)=0 (16)
divw +ydiv(f®, fP)=0 (17)

Here vy is a suitably small number (order 10°°). The system obtained in this manner is
non-singular.

NUMERICAL RESULTS

The overall numerical procedure iterates between the nonlinear system (15)-(17),
representing the conservation equations for linear momentum and mass and the linear
system (3,4), symbolizing the conservation of energy in both the fluid film and the
outer cylinder. In each step of the iteration the viscosity field is updated. First, initial
values such as velocities, variable viscosity, and temperature are assumed. Then, the
unknown values from equations (15)-(17) using the initial values can be calculated.
Considering the resulting velocities and viscosity profiles, then the temperature
distribution directly can be calculated. The whole system iterates until this temperature
distribution converges to a certain limit.

To investigate bearing performance, the following two non-dimensional
parameters are considered: (i) the Reynalds number R; (ii) the Eckert number E. These
two non-dimensional groups are independent parameters in the analysis. In this work,
two cases are presented: (a) the dissipation effects, and, separately, on inertia effects;
(b) the effects of heat dissipation with the full Navier-Stokes equations in a primitive
formulation. Figure 2, for both cases, shows the non-dimensional force for both
Sommerfeld and Gumbel boundary conditions in the laminar regime. In the figure the
eccentricity ratio is 0.5, but at other eccentricities the results are similar. For the case
(a) in Fig. 2, the load carrying capacity f is unaffected by changes in the Reynolds
number R (see Kim and Szeri [18] in detail). For the case (b), the Reynolds number

and the Eckert number are related as E=constant xR? for constant eccentricity ratio
(i.e., constant a) and fixed values of the reference thermodynamic quantities. In the

result of the case (b) the Eckert number is not shown, because the Eckert number can

be obtained by the given the Reynolds number using the equation E=constant xR%. The
non-dimensional force for the case (b) is a strong function of the Eckert number. This
means that the change in load capacity is due to changing E. The case (b), thus, is
only presented in the following resuits. Figure 3 shows the temperature distribution at
increasing values of the Eckert number, E, which means the increase of the Reynoids

number. Though the thickness of the fluid film is O(107), the range for the x-direction
is [0,1]. This gives the distorted view of the temperature distribution in the fluid film. in

the figure, it can be seen that the maximum temperature occurs about the middle

section of the film. On increasing the Eckert number to E=4.4 x10™, the temperature
profile varies moderately. In the present model, the means of cooling the bearing is by
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the Newtonian cooling to the ambient. Figure 4 shows the maximum temperature
against the Eckert number. It is noted that the maximum temperatures increase when
the Eckert number increases. A change in the maximum lubricant temperature of 224%

between E=1.2x10™ and E=4.4 x10™ was noted. Figure 5a, 5b show the stiffness
coefficients for both Sommerfeld boundary condition and Gumbel boundary conditions.
With the Sommerfeld condition the mixed components of the stiffness matrix are
strongly changed and the diagonal components increase linearly with the Eckert
number. With the Gumbel condition, all the matrix components decrease linearly, while
the another one, Ky, changes steeply. Solutions are obtained here under Sommerfeid
and Gumbel pressure boundary conditions. It has not, as yet, been able to implement
the physically more correct Swift-Stieber boundary conditions. This is a weakness of
the present analysis, as there is evidence that iubricant inertia stretches the lubricant
film [19] by moving the cavitation boundary downstream.
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