• Title/Summary/Keyword: textural features

Search Result 61, Processing Time 0.032 seconds

Anti-Spoofing Method for Iris Recognition by Combining the Optical and Textural Features of Human Eye

  • Lee, Eui Chul;Son, Sung Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2424-2441
    • /
    • 2012
  • In this paper, we propose a fake iris detection method that combines the optical and textural features of the human eye. To extract the optical features, we used dual Purkinje images that were generated on the anterior cornea and the posterior lens surfaces based on an analytic model of the human eye's optical structure. To extract the textural features, we measured the amount of change in a given iris pattern (based on wavelet decomposition) with regard to the direction of illumination. This method performs the following two procedures over previous researches. First, in order to obtain the optical and textural features simultaneously, we used five illuminators. Second, in order to improve fake iris detection performance, we used a SVM (Support Vector Machine) to combine the optical and textural features. Through combining the features, problems of single feature based previous works could be solved. Experimental results showed that the EER (Equal Error Rate) was 0.133%.

Texture-aware Blur Detection (질감 특징을 고려한 영상 흐려짐 검출 방법)

  • Jeong, Chanho;Kim, Wonjun
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.58-66
    • /
    • 2020
  • The blur effect, which is generated by various external factors such as out-of-focus and object movement, degrades high-frequency components in the original sharp image. Based on this observation, we propose a novel method for blur detection using textural features. Specifically, the proposed method simultaneously adopts learning-based and watershed-based textural features, which effectively detect the blur on various situations. Moreover, we employ the region-based refinement to improve the processing time while also increasing detection accuracy. Experimental results demonstrate that the proposed method provides the competitive performance compared to previous approaches in literature.

Shape-Based Classification of Clustered Microcalcifications in Digitized Mammograms

  • Kim, J.K.;Park, J.M.;Song, K.S.;Park, H.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2000
  • Clustered microcalcifications in X-ray mammograms are an important sign for the diagnosis of breast cancer. A shape-based method, which is based on the morphological features of clustered microcalcifications, is proposed for classifying clustered microcalcifications into benign or malignant categories. To verify the effectiveness of the proposed shape features, clinical mammograms were used to compare the classification performance of the proposed shape features with those of conventional textural features, such as the spatial gray-leve dependence method and the wavelet-based method. Image features extracted from these methods were used as inputs to a three-layer backpropagation neural network classifier. The classification performance of features extracted by each method was studied by using receiver operating-characteristics analysis. The proposed shape features were shown to be superior to the conventional textural features with respect to classification accuracy.

  • PDF

CT Image Analysis of Hepatic Lesions Using CAD ; Fractal Texture Analysis

  • Hwang, Kyung-Hoon;Cheong, Ji-Wook;Lee, Jung-Chul;Lee, Hyung-Ji;Choi, Duck-Joo;Choe, Won-Sick
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.326-327
    • /
    • 2007
  • We investigated whether the CT images of hepatic lesions could be analyzed by computer-aided diagnosis (CAD) tool. We retrospectively reanalyzed 14 liver CT images (10 hepatocellular cancers and 4 benign liver lesions; patients who presented with hepatic masses). The hepatic lesions on CT were segmented by rectangular ROI technique and the morphologic features were extracted and quantitated using fractal texture analysis. The contrast enhancement of hepatic lesions was also quantified and added to the differential diagnosis. The best discriminating function combining the textural features and the values of contrast enhancement of the lesions was created using linear discriminant analysis. Textural feature analysis showed moderate accuracy in the differential diagnosis of hepatic lesions, but statistically insignificant. Combining textural analysis and contrast enhancement value resulted in improved diagnostic accuracy, but further studies are needed.

Prediction Models for Solitary Pulmonary Nodules Based on Curvelet Textural Features and Clinical Parameters

  • Wang, Jing-Jing;Wu, Hai-Feng;Sun, Tao;Li, Xia;Wang, Wei;Tao, Li-Xin;Huo, Da;Lv, Ping-Xin;He, Wen;Guo, Xiu-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6019-6023
    • /
    • 2013
  • Lung cancer, one of the leading causes of cancer-related deaths, usually appears as solitary pulmonary nodules (SPNs) which are hard to diagnose using the naked eye. In this paper, curvelet-based textural features and clinical parameters are used with three prediction models [a multilevel model, a least absolute shrinkage and selection operator (LASSO) regression method, and a support vector machine (SVM)] to improve the diagnosis of benign and malignant SPNs. Dimensionality reduction of the original curvelet-based textural features was achieved using principal component analysis. In addition, non-conditional logistical regression was used to find clinical predictors among demographic parameters and morphological features. The results showed that, combined with 11 clinical predictors, the accuracy rates using 12 principal components were higher than those using the original curvelet-based textural features. To evaluate the models, 10-fold cross validation and back substitution were applied. The results obtained, respectively, were 0.8549 and 0.9221 for the LASSO method, 0.9443 and 0.9831 for SVM, and 0.8722 and 0.9722 for the multilevel model. All in all, it was found that using curvelet-based textural features after dimensionality reduction and using clinical predictors, the highest accuracy rate was achieved with SVM. The method may be used as an auxiliary tool to differentiate between benign and malignant SPNs in CT images.

An Extracting and Indexing Schema of Compressed Medical Images (축소변환된 의료 이미지의 질감 특징 추출과 인덱싱)

  • 위희정;엄기현
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2000.04a
    • /
    • pp.328-331
    • /
    • 2000
  • In this paper , we propose a texture feature extraction method of reduce the massive computational time on extracting texture, features of large sized medical such as MRI, CT-scan , and an index structure, called GLTFT, to speed up the retrieval performance. For these, the original image is transformed into a compressed image by Wavelet transform , and textural features such as contrast, energy, entropy, and homogeneity of the compressed image is extracted by using GLCM(Gray Level Co-occurrence Metrix) . The proposed index structure is organized by using the textural features. The processing in compressed domain can give the solution of storage space and the reduction of computational time of feature extracting . And , by GLTFT index structure, image retrieval performance can be expected to be improved by reducing the retrieval range . Our experiment on 270 MRIs as image database shows that shows that such expectation can be got.

  • PDF

Soft Sensor Design Using Image Analysis and its Industrial Applications Part 1. Estimation and Monitoring of Product Appearance (화상분석을 이용한 소프트 센서의 설계와 산업응용사례 1. 외관 품질의 수치적 추정과 모니터링)

  • Liu, J. Jay
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.475-482
    • /
    • 2010
  • In this work, soft sensor based on image anlaysis is proposed for quantitatively estimating the visual appearance of manufactured products and is applied to quality monitoring. The methodology consists of three steps; (1) textural feature extraction from product images using wavelet transform, (2) numerical estimation of the product appearance through projection of the textural features on subspace, and (3) use of latent variables of textural features (i.e., numerical estimates of product appearance). The focus of this approach is on the consistent and quantitative estimation of continuous variations in visual appearance rather than on classification into discrete classes. This approach is illustrated through the application to the estimation and monitoring of the appearance of engineered stone countertops.

MULTISPECTRAL IMAGING APPLICATION FOR FOOD INSPECTION

  • Park, Bosoon;Y.R.Chen
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.755-764
    • /
    • 1996
  • A multispectral imaging system with selected wavelength optical filter was demonstrated feasible for food safety inspection. Intensified multispectral images of carcasses were obtained with visible/near-infrared optical filters(542-847 nm wavelengths) and analyzed. The analysis of textural features based on co-occurrence matrices was conducted to determine the feasibility of a multispectral image analyses for discriminating unwholesome poultry carcasses from wholesome carcasses. The mean angular second moment of the wholesome carcasses scanned at 542 nm wavelength was lower than that of septicemic (P$\leq$0.0005) and cadaver(P$\leq$0.0005) carcasses. On the other hand, for the carcasses scanned at 700nm wavelength , the feature values of septicemic and cadaver carcasses were significantly (P$\leq$0.0005) different from wholesome carcasses. The discriminant functions for classifying poultry carcasses into three classes (wholesome, septicemic , cadaver) were developed using linear and quadr tic covariance matrix analysis method. The accuracy of the quadratic discriminant models, expressed in rates of correct classification, were over 90% for the classification of wholesome, septicemic, and cadaver carcasses when textural features from the spectral images scanned at the wavelength of 542 and 700nm were utilized.

  • PDF

Region of Interest Heterogeneity Assessment for Image using Texture Analysis

  • Park, Yong Sung;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.17-21
    • /
    • 2016
  • Heterogeneity assessment of tumor in oncology is important for diagnosis of cancer and therapy. The aim of this study was performed assess heterogeneity tumor region in PET image using texture analysis. For assessment of heterogeneity tumor in PET image, we inserted sphere phantom in torso phantom. Cu-64 labeled radioisotope was administrated by 156.84 MBq in torso phantom. PET/CT image was acquired by PET/CT scanner (Discovery 710, GE Healthcare, Milwaukee, WI). The texture analysis of PET images was calculated using occurrence probability of gray level co-occurrence matrix. Energy and entropy is one of results of texture analysis. We performed the texture analysis in tumor, liver, and background. Assessment textural features of region-of-interest (ROI) in torso phantom used in-house software. We calculated the textural features of torso phantom in PET image using texture analysis. Calculated entropy in tumor, liver, and background were 5.322, 7.639, and 7.818. The further study will perform assessment of heterogeneity using clinical tumor PET image.

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.