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Abstract : Clustered microcalcifications in X-ray mammograms are an important sign for the diagnosis of breast cancer. A
shape-based method, which is based on the morphological features of clustered microcalcifications, is proposed for classifying
clustered microgalcifications into benign or malignant categories. To verify the effectiveness of the proposed shape features,
clinical mammograms were used to compare the classification performance of the proposed shape features with those of
conventional textural features, such as the spatial gray-level dependence method and the wavelet-based method. Image
features extracted from these methods were used as inputs to a three-layer backpropagation neural network classifier. The
classification performance of features extracted by each method was studied by using receiver operating-characteristics
analysis. The proposed shape features were shown to be superior to the conventional textural features with respect to

classification accuracy.
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[. INTRODUCTION

Breast cancer is one of the major causes of mortality
in middle-aged women, especially in developed country[1].
In 1994, the mortality and the incidence rate of breast
cancer were estimated as 3.9 and 9.9 per 100,000 women,
respectively, in Koreal2]. The mortality of breast cancer
in Korea is lower than that of other developed countries;
337 in United States, 10.7 in Japan, 13.8 in Singapore,
355 in France, and 445 in Germany; however, it
continues to slowly increase in Korea[2]. Mammography
associated with clinical breast examination is the most
effective method for early detection of breast cancer [3].
However, it is very difficult to interpret X-ray mammo-
grams because of the small differences in the image
densities of various breast tissues, in particular, for dense
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breast[4]. Radiologists interpret mammograms by visual
examination of the X-ray films for the presence of
abnormalities that can be interpreted as breast cancer. It
has been reported that about 10-30% of patients with
breast cancer are misdiagnosed by mammography (the
cancer is missed or misinterpreted) and only 10-30% of
cases that have mammographically suspicious findings
prove to be malignant when subjected to biopsy[5].
Calcifications, which are one of the early signatures of
breast cancer, are calcium deposits that form on the
breast as a result of a benign or a malignant process.
Calcifications with diameters of less than 0.7mm are
called microcalcifications. It has been reported that 30-
50% of breast cancers detected radiographically had the
clustered microcalcifications in mammograms, and 60-80%
of breast cancers had the clustered microcalcifications
upon microscopic examination[6]. Therefore, clustered
microcalcifications are an important sign in the detection
of breast cancer. The clinical experience of radiologists
indicates that clustered microcalcifications are defined as
containing three or more microcalcifications within an
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area of lemXlem in mammograms|7]. Computer-aided
diagnosis {CAD) methods[8~14] for classification of mi-
crocalcifications have been proposed to increase the
radiologist’s sensitivity and specificity and to minimize the
number of unnecessary biopsies.

The morphologies of the microcalcifications are the
major criteria for distinguishing benign from malignant in
terms of diagnosis of radiologist[4]. Benign and malig-
nant microcalcifications in breast tissues can produce
similar patterns of calcium deposition. Biopsy is often
required for diagnosis since radiographical examination is
not certain to differentiate between benign and malignant
microcalcifications. Analysis of the size, the shape, the
number, and the density of the microcalcifications in a
cluster can, however, improve the discrimination accuracy
[4]. Malignant microcalcifications are usually variable in
size, shape, and density in a cluster. Benign microcalcifi-
cations are often rounder, fewer in number, and more
uniform in density and size than malignant microcalcifi-
cations. The probability of breast cancer also increases
with the number of microcalcifications in a cluster. How-
ever, no absolute minimum threshold exists.

This paper proposes a shape-based method for classi-
fication of clustered microcalcifications into benign or
malignant. The method is based on the morphological
features of clustered microcalcifications. To verify the
effectiveness of the proposed shape features, a study was
performed to compare the classification performance of
the proposed shape features with conventional textural
features, such as the spatial gray-level dependence
method (SGLDM)[15] and the wavelet-based method[11].
Image features extracted from these methods were used
as inputs to a three-layer backpropagation neural network
classifier [16], which classified regions of interest (ROIs)
into positive ROIs containing malignant microcalcifications
or negative ROIs containing benign microcalcifications. A
receiver operating-characteristics (ROC) analysis(17, 18]
was employed to evaluate the classification performance
of the image features. The area under the ROC curve, A,
was used as a measure of the classification performance.

The proposed shape-based classification method is des-
cribed in Section II of this paper. The experimental re-
sults and discussions are presented in Section III. Finally,
conclusions are given in Section V.
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Fig. 1. The block diagram of the proposed shape-based
classification

II. SHAPE-BASED CLASSIFICATION
METHOD

This section presents the details of the proposed method,
which consists of the film-artifact removal, micro-
calcification segmentation, shape feature extraction, and
classification. Figure 1 shows a block diagram of the
proposed method for classification of clustered microcalci-
fications into benign or malignant categories. In Fig. 1,
the ROI denotes the breast region containing clustered
microcalcifications, which is selected with an area of 128
X128 pixels from the digitized mammograms.

A. Film-Artifact Removal

There are small emulsion continuity faults on X-ray
films, which look like microcalcifications[4]. These arti-
facts are usually more sharply defined and brighter than
the microcalcifications in X-ray mammogram films. A
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Fig. 2. 3X3 discrete Laplacian operator
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simple film-artifact removal filter is applied to the orig-
inal digitized image in order to remove the film artifacts.
The proposed film-artifact removal filter exploits the fact
that the boundaries of the film artifact are abrupt,
whereas those of microcalcifications are smooth.

Let us consider a 3X3 window centered on a current
pixel (X, y) and compute the gradients at nine points
within the window. Each gradient is obtained by a 3x3
discrete Laplacian operator, as shown in Fig. 2. If the
maximum gradient, gmax(X, y), among the nine gradients
is larger than a threshold value, Ty, the current pixel at
the center of the 3X3 window is regarded as the film
artifact and is replaced by the median value of the pixels
within a 5X5 window W. The output of the film-artifact
removal filtering, S(x, y), is defined as

median{I(x~ k y— 0, (k1) € W, if g (53) > T
1(x, y), otherwise (1)

S(x, ) = {

where I(x, y) is the original image and W is the 5X5
window. In eq. (1), the threshold value, Ty, is empirically
selected from many digitized mammograms so that the
film artifacts can be removed and the microcalcifications
can be preserved.

B. Segmentation of Microcalcifications

In general, the shape-based classification can be
performed by using the binary information representing
microcalcifications. Shape feature extraction is then per-
formed from such segmented binary images. Therefore,
the performance of shape-based classification depends on

ARARS

R

Fig. 3. Configuration of the surrounding regions cen-
tered at the current pixel (x, y). R; and Rz are the inner
surrounding region and the outer surrounding region,
respectively. wi, wz, and ws denote the size of each
square window

the segmentation of the microcalcifications. A segment-
ation method is proposed to extract the original shapes of
the microcalcifications in the ROIs containing clustered
microcalcifications.

Let us consider three rectangular windows centered on
a current pixel (x, y), as shown in Fig. 3. In this figure,
R:i and Ry are the inner surrounding region and the outer
surrounding region, respectively, and wi, w2, and ws
denote the size of each square region. In this study, wi,
wz, and ws have the values of 3, 5 and 7, respectively.
These window sizes are determined in consideration of
the lesion size to be detected and the pixel resolution of
digitized X-ray mammograms. The inner count, C R XY,

and the outer count, Cp/(x,y), on the current pixel (x, y)

are defined as follows,

() =H(LD(LDc R and [S(x ) - KkDI>q (9
(B =H(LDI(k) e R and [S(x,5) - S(kD>q (3

where # denotes the number of elements in the set,
S(x, ¥) is the image intensity on the current pixel (x, y),
and q is a given threshold value. The q value is
determined empirically so that the original shapes of the
microcalcifications can be preserved. Segmentation of
individual microcalcifications is performed by thresholding
the inner count and the outer count of egs. (2) and (3) to
decide whether a pixel belongs to a microcalcification.
The binary image B(x, y) is computed as follows,

L if(x)2Forc(x)>T
0, otherwise (4)

B(X,ﬂ={

where T and Tz are the threshold values of the inner
count and the outer count, respectively. In our study, T1
and T have values of 8 and 12, respectively, to differ—
entiate the pixels in the microcalcifications from the
pixels in the normal tissues. In the binary image obtained
from eq. (4), “1” means the pixel is in a microcalcification
region. However, small objects less than four pixels are
excluded from the microcalcifications because very small
objects are usually noise caused by inhomogeneous tissue
background.

C. Shape Feature Extraction

The shape features employed in this study are based
on the morphological features of clustered microcalci-
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fications and are derived from the binary image B(x, y).
Four shape features are used in order to describe the
visibility and the shape of the individual microcal-
cifications, these are the size, the mean density, the ratio
of the semimajor to the semiminor axes of the best-fit
ellipse, and the eccentricity.

The size (or area) is defined as the number of pixels
contained within the microcalcification region. The mean
density of the individual microcalcification is defined as
the average of the original pixel values S(x, y} in the
microcalcification region. The best-fit ellipse and the
eccentricity are useful shape features[19], which are based
on the moment of the object. For an object represented
by a region R containing N pixels, the center of mass is
given by

_ 1 _ 1
T=— X, Y= 2
N(x.zy)ek N(E;)GR (5)

The (p+g)-order central moment becomes

Hp =2, 2. (x=D"(y= 7"

(xR (6)

The object orientation ¢ is the angle between the
major axis of the object and the x axis, which is defined
as follows,

9= 1tan"|: 2uy :|
2 Hao — Hor v

The ratio, a/b, of the semimajor to the semiminor axes
of the best-fit ellipse is calculated as follows: The
best—fit ellipse is the ellipse whose second moment as
equal to that of the object. Let a and b denote the
lengths of the semimajor and the semiminor axes,
respectively, of the best-fit ellipse. For the bestfit ellipse,
a and b are given as follows,

2= (%)T@T’ b= (%)4{(_11“_)3} ®)

Q0 | =

min max

where Imax and Imin can be calculated as

I, = ZZ[(X— ¥)sind+(y— y)cosﬁlz,
(5P)ER 9)
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Table 1. Shape features for classification of clustered
microcalcifications into benign or malignant.

Morphologies of individual microcalcifications

Size

Mean density

Ratio of the semimajor to the semiminor axes of the
best—fit ellipse

Eccentricity

Shape features of clustered microcalcifications

Mean of above measurements in an ROI

Standard deviation of above measurements in an ROI
Maximum of above measurements in an ROI
(Maximum - Mean) of above measurements in an ROI
(Mean - Minimum) of above measurements in an ROI

Number of microcalcifications in an ROI

Ly = 2.2 [(x-F)ecos0—(y- jf)sinH]Z.

(x,NeR (10)

Finally the object eccentricity is defined as follows,

_ (/”20 - ,Uoz)2 +4u,
area ) (1D
The above features are taken for each microcalcifica-
tion. In order to describe the variations of the mor-
phologies of the microcalcifications in an ROI, the mean,
the standard deviation, the maximum, the difference
between the maximum and the mean, and the difference
between the mean and the minimum are calculated from
these features. A total of twenty-one shape features,
including the number of microcalcifications in an ROI, are
extracted, as listed in Table 1.

D. Classification

Input Features

P Input Layer

Hidden Layer

Output Layer

Fig. 4. Structure of the three-laver -backpropagation ne-
ural network
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In order to classify ROIs into positive ROIs containing
malignant microcalcifications or negative ROIs containing
benign microcalcifications, a three-layer backpropagation
neural network [16] is employed as a classifier, as shown
in Fig. 4. A nonlinear sigmoid function with “0” and “1”
saturation values is used as the activation function for
each neuron.

In the training process, the weights between the
neurons are adjusted iteratively so that the difference
between the output values and the target values is
minimized. The weight values are updated by iteration as
follows,

W+ 1) = wy () +08 0, + i wlh) - w,(I-D] 1)

where w; (1) is the weight from the ith to the jth
neurons, oj is the jth element of the actual output pattern
produced by an input pattern, 7 is the learning rate, [ is
the number of epochs, &; is the error signal, and # is a
momentum parameter. To evaluate the network perfor—
mance during the training process, a global error measure
[20] is given as

(13)

where oy and f; are the output and the target values
for the gth input pattern, respectively, and G is the num-
ber of training patterns. In this study, the training
process is stopped when the root mean square (RMS)

€ITOr, € pys becomes smaller than a given constant &.

III. EXPERIMENTAL RESULTS AND
DISCUSSION

A. ROI Selection

From the patient files in the Department of Radiology
at Asan Medical Center in Seoul, Korea, one hundred
fourteen X-ray mammograms with clustered microcalci-
fications were selected. The mammograms were digitized
by a Lumisys laser film scanner with a pixel size of 100
£mX100m and 12 bits per pixel. One hundred fourteen
ROIs were selected from the database of digitized mam-
mograms. An ROI was selected with an area of 128%128
pixels (e, 1.28cmx128cm) from the digitized mam-

(a) (b)

Fig. 5. Examples of segmented microcalcifications in
ROl images with 128X 128 pixels: (a) positive ROl and
(b) negative ROIl. The computation was performed when
the threshold g was 60, and ws, we, and ws were 3, 5,
and 7, respectively
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Fig. 6. Area under the ROC curve, A; to define the
optimum number of hidden neurons for each class-
ification method. A, values were computed for various
numbers of hidden neurons (i.e., 5, 10, 15, 20, 25, and
30 neurons) in order to find the optimum number of
hidden neurons

mograms, and all of the ROIs included clustered micro-
calcifications.

Among the selected 114 ROIs, 62 ROIs were positive,
le, contained malignant microcalcifications, and 52 ROIs
were negative, ie., contained benign microcalcifications.
Benign or malignant of clustered microcalcifications were
verified by an expert mammographer.

J. Biomed. Eng. Res: Vol. 21, No. 2, 2000
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B. Comparative Study

To study the efficacies of classification, the proposed
method was compared with conventional textural methods,
such as the SGLDM and the wavelet-based method. The
SGLDM [15], which has been widely used in pattern
recognition fields, is based on an estimate of the second-
order joint conditional probability density functions, p(i,
jld @), for=0°, 45°, 90°, and 135°. The function p(i, jld,
@) is the probability that two pixels, which are located
with an intersample distance d and a direction €, have a
gray-level { and a gray-level j. Each of the estimated
joint probability density functions can be written in
matrix form; ie., the spatial gray-level dependence ma-
trix, @©(d, 6), which is given as follows,

0(d, 0)=lpijid, 8)], 0<i,j<N, (14

where Ng is the maximum gray-level. Thirteen textural
features are measured from the matrix @(d, 8); energy,
entropy, correlation, local homogeneity, inertia, sum av-
erage, sum variance, sum entropy, difference average,
difference variance, difference entropy, information mea-
sure of correlation 1, and information measure of correl-
ation 2 [15]. In this study, four spatial gray-level depend-
ence matrices for four different directions (8 = 0°, 45°
90°, and 135°) are obtained at d = 1. A total of 52 tex-
tural features are calculated for an ROl These fifty-two
textural features are used as input to the classifier.

Kocur et al [11] explored the usefulness of wavelet
analysis for the classification of benign and malignant
microcalcifications by using Daubechies—4, Daubechies—20,
and biorthogonal wavelets. An ROI is decomposed into
four matrices, such as the approximation signal and the
horizontal, vertical, and diagonal detail coefficients. Multi~
level wavelet analysis decomposes the approximation
signal further and repeats the decomposition until a single
pixel depiction results. At each level, the decomposed
coefficients are squared and summed, and the square root
is taken to generate a single feature for each of the
approximation and details of that level. The wavelet-
based method is investigated by computing the wavelet
transform in the ROL Therefore, these sets of four
numbers for each level, a total of 28 wavelet features, are
calculated for an ROl and are used as input to the
classifier. In this study, the Daubechies-4 wavelet is
employed.

The proposed shape-based method is based on the

<83 A) L A21, Al2E, 2000

morphological features of clustered microcalcifications. In
this experiment, the threshold values Ty and ¢ had value
of 110 and 60, respectively. Figure 5 shows examples of
segmented microcalcifications for a positive ROl and a
negative ROI Shape features are derived from the
segmented microcalcifications in an ROL To describe the
variations of the morphologies of the microcalcifications in
an ROI, a total of 21 shape features are calculated for an
ROI, as described in Section II, and are used as input to
the classifier.

A three-layer backpropagation neural network was em-—
ployed as a classifier, as described in Section II. The
neural networks were tested by using a round-robin
method[21]. When there are P sample patterns, the round
-robin method trains the classifier with P-1 samples,
then uses the one remaining sample as a test sample.
Classification is repeated in this manner until all P
samples have been used once as a test sample. In this
study, P was 114 (114 sample ROIs). Since the round-
robin method is performed with the sample which is not
used for training the neural network, these trials provide
a good approximation of the general performance of the
neural network. All the textural features were normalized
by the sample mean and standard deviation of the data
set. Each training of the neural network was stopped
whenever e zys was less than 0.1 in this experiment, ie.,
gy was 0.1. The learning rate and the momentum had
values of 0.08 and 0.7, respectively. The results of the
backpropagation neural network were analyzed by using
an ROC analysis. The ROC analysis was employed to
evaluate the performance of the image features in
classifying the ROIs into positive and negative ROlIs.
ROC curves were obtained by using LABROC1 program
developed by Metz et al [22] to fit the continuous outputs
of the neural networks. The area under the ROC curve,
A, was used as a measure of the classification perfor-
marnce.

In order to obtain the best classification performance
for the neural network, the optimum number of hidden
neurons in the neural network was analyzed for each
method of feature extraction. Figure 6 shows the results
of the classification performances with respect to the
number of neurons in the hidden layer of the backpro-
pagation neural network. The neural network for the
proposed shape-based method has 15 hidden neurons, the
wavelet-based method has 25 hidden neurons, and the
neural network for the SGLDM has 20 hidden neurons for
optimum classification performance. Figure 7 shows a
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Fig. 7. Comparison by the round-robin method of ROC
curves for the optimal performance of each method. TPF
and FPF are the true-positive fraction and the false-
positive fraction, respectively. A; values of the SGLDM
(at HN = 20), the wavelet-based method (at HN = 25),
and the proposed shape-based method (at HN = 15) are
0.80, 0.83, and 0.92, respectively. HN denotes the
number of hidden neurons

comparison of the ROC curves for each feature extraction
method with the optimum number of hidden neurons. In
Fig. 7, TPF and FPF are the true-positive fraction and
the false-positive fraction, respectively. A, values of the
SGLDM, the wavelet-based method, and the proposed
shape-based method are 0.80, 0.83, and 0.92, respectively.
From the viewpoint of classification accuracy, it is
apparent that the proposed shape features have the best
performance for classification of clustered microcalcifi-
cations into benign or malignant categories.

IV. CONCLUSIONS

This paper proposed a shape-based method for classifi-
cation of clustered microcalcifications into benign or mali-
gnant. Twenty-one shape features were defined, which
were based on the morphological features of clustered
microcalcifications. A three-layer backpropagation neural
network was employed as a classifier. To verify the use-
fulness of the proposed shape features for classification of
clustered microcalcifications, we compared the classifi-
cation performance of the proposed shape features with
those of two conventional methods in terms of ROC
analysis. The proposed shape features were superior to
the conventional methods with respect to classification

performance.

In spite of the limited number of cases, the experi-
mental results for the proposed method are promising.
However, a comprehensive database that covers a lot of
positive ROIs and negative ROls will be needed for the
training of the neural network in order to apply this
method to clinical situations involving the classification of
clustered microcalcifications in mammograms. In addition,
we will compare whether the overall performance may be
improved by combining the proposed shape features with
the textural features or not, and the thresholds in the
proposed segmentation algorithm will be tuned in order to
further improve the classification performance.
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