• Title/Summary/Keyword: tensile adhesion strength

Search Result 349, Processing Time 0.024 seconds

Bearing capacity of geotextile-reinforced sand with varying fine fraction

  • Deb, Kousik;Konai, Sanku
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • Use of geotextile as reinforcement material to improve the weak soil is a popular method these days. Tensile strength of geotextile and the soil-geotextile interaction are the major factors which influence the improvement of the soil. Change in fine content within the sand can change the interface behavior between soil and geotextile. In the present paper, the bearing capacity of unreinforced and geotextile-reinforced sand with different percentages of fines has been studied. A series of model tests have been carried out and the load settlement curves are obtained. The ultimate load carrying capacity of unreinforced and reinforced sand with different percentages of fines is compared. The interface behavior of sand and geotextile with various percentages of fines is also studied. It is observed that sand having around 5% of fine is suitable or permissible for bearing capacity improvement due to the application of geosynthetic reinforcement. The effectiveness of the reinforcement in load carrying capacity improvement decreases due to the addition of excessive amount of fines.

Influence of water saturation on fracture toughness in woven natural fiber reinforced composites

  • Kim, Hyo-Jin;Seo, Do-Won
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.83-94
    • /
    • 2007
  • Woven sisal textile fiber reinforced composites were used to evaluate fracture toughness, tensile and three-point bending. The water absorption testing of all specimens was repeated five times in this study. All specimens were immersed in pure water during 9 days at room temperature, and dried in 1 day at $50^{\circ}C$. Two kinds of polymer matrices such as epoxy and vinyl-ester were used. Fractured surfaces were taken to study the failure mechanism and fiber/matrix interfacial adhesion. It is shown that it can be enhanced to improve their mechanical performance to reveal the relationship between fracture toughness and water absorption fatigue according to different polymer matrices. Water uptake of the epoxy composites was found to increase with cycle times. Mechanical properties are dramatically affected by the water absorption cycles. Water-absorbed samples showed poor mechanical properties, such as lower values of maximum strength and extreme elongation. The $K_{IC}$ values demonstrated a decrease in inclination with increasing cyclic times of wetting and drying for the epoxy and vinyl-ester.

Insights into test methods of biocides in Sanitary Sealants (내곰팡이성 실란트의 방균 성능 평가방법에 대한 고찰)

  • Seo, Yeonwon;Jung, Jinyoung;Bae, Kisun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.170-172
    • /
    • 2013
  • To be applied to a humid environment such as bathroom and kitchen, sealant should have good adhesion, tensile strength, etc., it also have the resistance to fungal contamination from the environment. It is important to select right material for sanitary sealing application in order to prevent premature discoloration and fungal activities. Especially for high humidity conditions, it is crucial to have longer mildew and fungal resistance. In this article, we intended to give guide lines for developing right sanitary sealing material and practical test method for evaluating anti-fungal performances reflecting Korean residential life style.

  • PDF

Synthesis and Characterization of Poly(Urethane-Methyl methacrylate) Hybrid Emulsion as a Plastic Coating Resin (플라스틱 코팅용 Poly(Urethane-MMA) 혼성 에멀젼 합성 및 특성 연구)

  • Yeom, Ji-Yoon;Baek, Kyung-Hyun;Lee, Jun-Young;Yi, Gyoung-Bae;Yoo, Byung-Won;Kim, Jung-Hyun
    • Journal of Adhesion and Interface
    • /
    • v.8 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Poly(urethane-methyl methacrylate) hybrid emulsions can be controlled with their thermal, mechanical and anti-chemical properties as plastic coating materials. In this study, water dispersed poly(urethane-methyl methacrylate) hybrid emulsions were prepared by prepolymer synthesis and soap free emulsion polymerization. For imparting hydrophilicity on polyurethane prepolymer, 2,2-bis (hydroxymethyl) propionic acid was added to the polyurethane prepolymer with methyl methacrylate monomer and was neutralizated by triethylamine (TEA). After neutralization, the prepolymer mixture was dispersed in the water phase with stable droplets. The synthesis was carried out with chain extension from the ethylene diamine and initiation of methyl methacrylate by soap free emulsion polymerization. Stable poly(urethane-methyl methacrylate) hybrid emulsion was successfully obtained with different synthetic conditions and acrylic monomer contents. Poly(urethane-methyl methacrylate) hybrid emulsion were characterized and compared with tensile strength, viscosity, and adhesion properties.

  • PDF

Functional Improvement of Hot Melt Adhesive Using Polyamide Type Resin -(I) Physical Properties of Adhesives- (폴리아미드계 수지를 이용한 핫멜트 접착제의 기능 향상 -(I) 접착제의 물성-)

  • Chun, Young-Sik;Hong, Young-Keun;Chung, Kyung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.194-202
    • /
    • 1996
  • Hot melt adhesive based on the polyamide resin was studied to improve the conventional hot melt adhesives such as ethylene-vinyl acetate which have inherent problems against creep and heat resistance. It was found that the terpolymer of nylons6, nylon66, and nylon12 or the nylon blend instead of nylon homopolymer was suitable base resin for hot melt adhesives, since the disruption of regularity in the polymer chains reduced the crystallinity, resulting in lower melting point and melt viscosity. Also, the rheological properties of the polyamide based hot melt adhesive could be controlled by the incorporation of terpene resin, butyl benzyl phthalate, and paraffin wax. The results of melt viscosities and tensile properties of adhesive itself indicated that the optimum adhesion properties could be obtained through the blending of CM831/843P resins with weight ratio 75/25~50/50. The adhesion between steel and steel was tested by using lap shear geometry. It was found that the surface roughness of steel affected the adhesion strength.

  • PDF

Mechanical Properties of Alkali Treated Kenaf Fiber Filled PP Bio-Composites (알칼리 처리된 Kenaf 섬유가 충전된 Polypropylene/Kenaf 바이오복합재의 기계적 특성)

  • Kim, Samsung;Lee, Byoung-Ho;Kim, Hyun-Joong;Oh, Sei Chang;Ahn, Sye-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.222-230
    • /
    • 2009
  • This study was to investigate the effect of alkali treatment for long kenaf fiber to improve fiber surface characterics by removal of wax, lignin and hemicellulose which affect adversely for matrix union. SEM observation was also studied to check out the interface adhesion improvement by the alkali pre-treatment. From the result, interface coherence increased by 3% alkali pre-treatment and reached a maximum by 5% alkali pre-treatment. However, the 3% the bio-composites treated with 3% alkali was highest tensile and flexural strength than other.

A Study on Preparation and Characteristics of Natural Adhesives with Lacquer and Animal Glue for Ceramics Conservation (옻과 아교를 이용한 토기 복원용 천연접착제 제조 및 특성 분석)

  • Kim, Eun Kyung;Park, Daewoo;Jang, Sungyoon
    • Journal of Adhesion and Interface
    • /
    • v.14 no.3
    • /
    • pp.128-134
    • /
    • 2013
  • This study investigated the natural adhesives for ceramics conservation that can be used as a substitution for synthetic resins. Samples were prepared by mixing lacquer with animal glue and the structure and adhesion properties of the samples were analyzed. The structure analysis with FT-IR showed that carbonyl (C=O), amine (N-H) and aromatic (C=C) bonds are increased by adding animal glue on lacquer. Comparing to the viscosity and tensile strength of the sample to the Paraloid B-72 and Araldite rapid type, these natural adhesives can be a substitution for the synthetic resins. Through methodical and intensive study, we expect practical uses of this eco-friendly natural adhesives for ceramics conservation.

Manufacture of PMMA/PBA and PBA/PMMA core Shell Composite Particles - Effect of emulsifier - (PMMA/PBA와 PBA/PMMA Core Shell 복합입자의 제조 - 유화제의 영향 -)

  • Seul, Soo Duk
    • Journal of Adhesion and Interface
    • /
    • v.11 no.3
    • /
    • pp.112-119
    • /
    • 2010
  • Poly(methyl methacrylate)/poly(butyl acrylate) PMMA/PBA core-shell composite particles were prepared by the emulsion polymerization of MMA and BA in the presence of different concentration of sodium dodecyl benzene sulfonate (SDBS). The following conclusions are drawn from the measured conversion and particle size distribution, morphology, average molecular weight distribution, observation of film formation and particle formation, glass transition temperature and physical properties of polymerized core-shell composition particles for using adhesive binder. When the concentration of 0.03 wt% surfactant, the conversions of PMMA and PBA core polymerization are excellent as 95.8% for PMMA core and 92.3% for PBA core. Core-shell composite particles are obtained 90.0% for PMMA/PBA core-shell composite particles and 89.0% for PMMA/PBA core-shell composite particles. It is considered that the core and shell particles are polymerized to be confirmed FT-IR spectra and average molecular weight measured with a GPC, formation of the composite particles is confirmed by the film formation from normal temperature, and composition of inside and outside of the composite particle is confirmed by TEM photograph. The synthesized polymer has two glass transition temperatures, suggesting that the polymer is composed of core polymer and shell polymer unlike general copolymers. It is considered that each core-shell composite particle can be used as a high functionality adhesion binder by the measurement of tensile strength and elongation.

Evaluation of Lateral Strength and Ductility of Velcro Reinforced RC Columns with Finite Element Analysis (유한요소해석을 통한 벨크로로 보강된 RC 기둥의 횡방향 강도 및 연성 능력 평가)

  • Kim, Sang-Woo;Kim, Kyeong-Min;Kim, Geon-Woo;Lee, Su-Young;Kim, Jin-Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.12-19
    • /
    • 2021
  • Recently, with frequent earthquakes around the world, research on seismic design and seismic reinforcement of reinforced concrete facilities has been actively conducted from earthquakes. In particular, columns, which are compressed members of reinforced concrete structures, are vulnerable to lateral forces caused by earthquakes, so an appropriate seismic reinforcement method is required. Therefore, this study intended to develop Velcro seismic reinforcement method that is quick and easy to construct. For the development of Velcro seismic reinforcement, the adhesion and tensile strength of the existing industrial velcro was improved. A direct tensile test was also conducted to compare the tensile performance of the newly-developed velcro seismic reinforcement to industrial one. In addition, numerical analysis was performed to predict the seismic performance of RC columns reinforced by industrial and newly-developed velcro. Based on the analysis results, the strength and ductility of the non-seismic and velcro-reinforced RC column were reviewed. The analysis confirmed that both the strength and ductility of non-seismic RC columns reinforced by industrial and newly-developed velcro increased, but the seismic performance of the newly-developed Velcro reinforcement is better than that of industrial velcro.

Synthesis and Adhesion Characteristics of Water-Borne Acrylic Pressure Sensitive Adhesives(PSAs) (수계형 아크릴 점착제의 합성 및 점착 특성)

  • Hahm, Hyun-Sik;Kwak, Yun-Chul;Hwang, Jae-Young;Ahn, Sung-Hwan;Kim, Myung-Soo;Park, Hong-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.191-199
    • /
    • 2005
  • Removable protective adhesives for automobiles were synthesized by an emulsion polymerization of monomers such as n-butyl acrylate (BA), n-butyl methacrylate (BMA), acrylonitrile (AN), acrylic acid (AA) and 2-hydroxyethyl methacrylate (2-HEMA), in which AA and 2-HEMA were functional monomers. Potassium persulfate (KPS) was used as an initiator and sodium lauryl sulfate (SLS) was used as an emulsifier, and polyvinyl alcohol (PVA) was used as a stabilizer. Emulsion polymerization was carried out in a semi-batch type reactor. Tensile strength, extension, peel strength, viscosity and solid content of the synthesized adhesives were tested. The optimum physical properties of the removable protective adhesives for automobiles were obtained with the composition of 0.43 mole BA, 0.57 mole AN, 0.21 mole BMA, 0.03 mole AA, and 0.03 mole 2-HEMA.