• Title/Summary/Keyword: temperature Compensation

Search Result 573, Processing Time 0.025 seconds

Temperature Compensation and Characteristics of Non-dispersive Infrared Alcohol Sensor According to the Intensity of Light (입사광량의 조절과 이에 따른 비분산 적외선 알코올 센서의 온도 특성과 보정)

  • Kim, JinHo;Cho, HeeChan;Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2018
  • In this paper, we describe the thermal characteristics of the output voltages of ethanol gas sensor according to the amount of radiation incident on the infrared sensors located at each focal point of two elliptical waveguides. In order to verify the output characteristics of the gas sensor according to the amount of incident light on the infrared sensor, two combinations of sensor modules were fabricated. Hydrophobic thin film is deposited on one of the reflectors of sensor modules and one of the two infrared sensors was equipped with a hollow disk (10 Ø), and the temperature characteristics of the infrared sensor equipped with the hollow disk (10 Ø) and the infrared sensor without the disk were tested. The temperature was varied from 253 K to 333 K at 10 K intervals based on 298 K. The properties of ethanol gas sensor have been identified with respect to varying temperature for a range of ethanol concentration from 0 ppm to 500 ppm. In the case of an infrared sensor equipped with a hollow disk (10 Ø), the output voltage of the sensor decreased by 0.8 mV and 1 mV, respectively, as the temperature increased. Conversely, the output voltage of the diskless infrared sensor showed an average increase of 67 mV and 57 mV as the temperature increased. The ethanol concentrations estimated on the basis of results show an error of more than 10 % for less than 100 ppm concentration. However, if the ethanol concentration exceeds 100 ppm, the gas concentration can be estimated within the range of ${\pm}10%$.

Investigation of the Thermal Mode-based Thermal Error Prediction for the Multi-heat Sources Model (다중열원모델의 열모드기반 열변위오차 예측)

  • Han, Jun An;Kim, Gyu Ha;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.754-761
    • /
    • 2013
  • Thermal displacement is an important issue in machine tool systems. During the last several decades, thermal error compensation technology has significantly reduced thermal distortion error; this success has been attributed to the development of a precise, robust thermal error model. A major advantage of using the thermal error model is instant compensation for the control variables during the modeling process. However, successful application of thermal error modeling requires correct determination of the temperature sensor placement. In this paper, a procedure for predicting thermal-mode-based thermal error is introduced. Based on this thermal analysis, temperature sensors were positioned for multiple heat-source models. The performance of the sensors based on thermal-mode error analysis, was compared with conventional methods through simulation and experiments, for the case of a slide table in a transient state. Our results show that for predicting thermal error the proposed thermal model is more accurate than the conventional model.

Advances and challenges in impedance-based structural health monitoring

  • Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.4
    • /
    • pp.301-329
    • /
    • 2017
  • Impedance-based damage detection method has been known as an innovative tool with various successful implementations for structural health monitoring of civil structures. To monitor the local critical area of a structure, the impedance-based method utilizes the high-frequency impedance responses sensed by piezoelectric sensors as the local dynamic features. In this paper, current advances and future challenges of the impedance-based structural health monitoring are presented. Firstly, theoretical background of the impedance-based method is outlined. Next, an overview is given to recent advances in the wireless impedance sensor nodes, the interfacial impedance sensing devices, and the temperature-effect compensation algorithms. Various research works on these topics are reviewed to share up-to-date information on research activities and implementations of the impedance-based technique. Finally, future research challenges of the technique are discussed including the applicability of wireless sensing technology, the predetermination of effective frequency bands, the sensing region of impedance responses, the robust compensation of noise and temperature effects, the quantification of damage severity, and long-term durability of sensors.

On the deduction of electron temperature by various electric probes in RF plasma (다양한 전기탐침을 이용한 RF 플라즈마 전자온도의 측정)

  • Seo, V.J.;Woo, H.J.;Choe, G.S.;You, H.J.;Lho, T.;Chung, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1568-1569
    • /
    • 2006
  • An electric probe is a conductor inserted into the plasma, by which plasma density and electron temperature can be deduced from the collected current (I) versus applied voltage (V) to the probe. In RF plasma the I-V characteristics of electric probe is distorted due to the RF fluctuation of plasma potential, so that it is hard to measure the real plasma parameters, especially the electron temperature. To eliminate the RF fluctuation, several compensation methods are developed such as RF compensation probe, peak-to-peak method, asymmetric double probe. By comparing proposed methods, a suitable method is to be introduced in determining electron temperatures in RF plasma.

  • PDF

Temperature Compensation of Optical FBG Sensors Embedded Tendon for Long-term Monitoring of Tension Force of Ground Anchor (광섬유 센서 내장형 텐던을 이용한 그라운드 앵커의 장기 장력모니터링을 위한 온도보상)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.13-25
    • /
    • 2012
  • Ground anchor method is one of the most popular reinforcing technology for slope in Korea. For the health monitoring of slope which is reinforced by permanent anchor for a long period, monitoring of the tension force of ground anchor is very important. However, since electromechanical sensors such as strain gauge and V/W type load cell are also subject to long-term risk as well as suffering from noise during long distance transmission and immunity to electromagnetic interference (EMI), optical FBG sensors embedded tendon was developed to measure strain of 7-wire strand by embedding FBG sensor into the center king cable of 7-wire strand. This FBG sensors embedded tendon has been successfully applied to measuring the short-term anchor force. But to adopt this tendon to long-term monitoring, temperature compensation of the FBG sensors embedded tendon should be done. In this paper, we described how to compensate the effect in compliance with the change of underground temperature during long-term tension force monitoring of ground anchors by using optical fiber sensors (FBG: Fiber Bragg Grating). The model test was carried out to determine the temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon. The determined temperature sensitivity coefficient ${\beta}^{\prime}=2.0{\times}10^{-5}/^{\circ}C$ was verified by comparing the ground temperatures predicted from the proposed sensor using ${\beta}^{\prime}$ with ground temperatures measured from ground thermometer. Finally, temperature compensations were carried out based on ${\beta}^{\prime}$ value and ground temperature measurement from KMA for the tension force monitoring results of tension type and compression type anchors, which had been installed more than 1 year before at the test site. Temperature compensated tension forces are compared with those measured from conventional load cell during the same measuring time. Test results show that determined temperature sensitivity coefficient (${\beta}^{\prime}$) of FBG sensors embedded tendon is valid and proposed temperature compensation method is also appropriate from the fact that the temperature compensated tension forces are not dependent on the change of ground temperature and are consistent with the tension forces measured from the conventional load cell.

Damage Monitoring of PSC Girder Bridges based on Acceleration -Impedance Signals under Uncertain Temperature Conditions (불확실한 온도 조건하의 PSC 거더 교량의 가속도-임피던스기반 손상 모니터링)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2011
  • In this study, the effect of temperature-induced uncertainty to damage monitoring using acceleration-impedance response features is analyzed for presterssed concrete(PSC) girder bridges. Firstly, a damage monitoring algorithm using global and local vibration features is designed. As global and local features, acceleration and electro-mechanical impedance features are selected respectively. Secondly, the temperature effect on the acceleration and impedance features for a lab-scaled PSC girder is experimentally analyzed. From the experimental results, compensation models for temperature-acceleration features and temperature-impedance features are estimated. Finally, the feasibility of the acceleration-impedance-based damage monitoring technique using the compensation model is evaluated in the PSC girder for which a set of prestress-loss and flexural stiffness loss cases were dynamically tested.

CMOS Voltage down converter using the self temperature-compensation techniques (자동 온도 보상 기법을 이용한 CMOS 내부 전원 전압 발생기)

  • Son, Jong-Pil;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.1-7
    • /
    • 2006
  • An on chip voltage down converter (VDC) using the self temperature-compensation techniques is proposed. At a different gate bias voltage, PMOSFET shows different source to drain current characteristic according to the temperature variation. The proposed VDC can reduce its temperature dependency by the source to drain current ratio of two PMOSFET with different gate bias respectively. Proposed circuit is fabricated in Dongbu-anam $0.18{\mu}m$ CMOS process and experimental results show its temperature dependency of $-0.49mV/^{\circ}C$ and external supply dependency of 6mV/V. Total current consumption is only $1.1{\mu}A@2.5V$.

Study of Temperature stabilization for Isolator using YIG ferrite (YIG 페라이트를 이용한 아이솔레이터의 온도안정화 연구)

  • 전동석;이홍열;김동영;한진우;이상석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.78-81
    • /
    • 2002
  • This paper describes on the design structure and development temperature stable strip-line junction isolator operating in above resonance mode. Temperature characteristics of isolator depend on magnet, YIG(Yttium Iron Garnet) ferrite, and conductor etc. These require temperature stability and possible methods of compensation for the temperature dependent effects. In this paper, the analysis and measurement of the temperature characteristics were carried out for the material isolator prototype. The bandwidth of isolator was expended and the center frequency shift was reduced in temperature range of -20∼8O$^{\circ}C$.

  • PDF

Study of Temperature Stabilization for Isolator using YIG ferrite (YIG 페라이트를 이용한 아이솔레이터의 온도안정화 연구)

  • 전동석;이홍열;김동영;한진우;이상석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1075-1078
    • /
    • 2002
  • This paper describes on the design structure and development of temperature stable strip-line function isolator operating In above resonance mode. Temperature characteristics of isolator depend on magnet, YIG(Yttium Iron Garnet) ferrite, and conductor etc. These require temperature stability and possible methods of compensation for the temperature dependent effects. In this paper, the analysis and measurement of the temperature characteristics were carried out for the material isolator prototype. The bandwidth of isolator was expended and the frequency shift at center was reduced in the temperature range of -20∼80$\^{C}$.

A Torque Compensation Method Considering Temperature Variation of SPMSM

  • Jung, Tae-Uk;Park, Chang-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.160-167
    • /
    • 2018
  • This paper analyzed the effect of temperature on the permanent magnet flux and output torque. The major parameter which will impact the torque control accuracy of a surface mounted permanent magnet motor is the variation of the permanent magnet temperature. In addition, the temperature variation of the permanent magnet will also influence the maximum torque per ampere of the motor. To analyze the effect of temperature on the permanent magnet, the rotor of the motor was directly heated to measure the temperature and the permanent magnet flux was measured. As a result, the output torque of the motor decreases as the temperature of the rotor permanent magnet increases. Therefore, this paper proposes a technique to compensate the phase current of the motor by estimating permanent magnet flux, and it is proved through theoretical basis and several experiments.