DOI QR코드

DOI QR Code

A Torque Compensation Method Considering Temperature Variation of SPMSM

  • Jung, Tae-Uk (Department of Electrical Engineering, Kyungnam University) ;
  • Park, Chang-Seok (Department of Electrical Engineering, Kyungnam University)
  • Received : 2017.05.02
  • Accepted : 2017.08.14
  • Published : 2018.01.01

Abstract

This paper analyzed the effect of temperature on the permanent magnet flux and output torque. The major parameter which will impact the torque control accuracy of a surface mounted permanent magnet motor is the variation of the permanent magnet temperature. In addition, the temperature variation of the permanent magnet will also influence the maximum torque per ampere of the motor. To analyze the effect of temperature on the permanent magnet, the rotor of the motor was directly heated to measure the temperature and the permanent magnet flux was measured. As a result, the output torque of the motor decreases as the temperature of the rotor permanent magnet increases. Therefore, this paper proposes a technique to compensate the phase current of the motor by estimating permanent magnet flux, and it is proved through theoretical basis and several experiments.

Keywords

E1EEFQ_2018_v13n1_160_f0001.png 이미지

Fig. 1. B-H curves of the NP-8R 6kOe bonded NdFebmagnet

E1EEFQ_2018_v13n1_160_f0002.png 이미지

Fig. 2. Demagnetization ratio curves of the NP-8R 6kOebonded NdFeb magnet according to temperature

E1EEFQ_2018_v13n1_160_f0003.png 이미지

Fig. 3. MTPA curve of SPMSM

E1EEFQ_2018_v13n1_160_f0004.png 이미지

Fig. 4. Magnetic flux linkage observer

E1EEFQ_2018_v13n1_160_f0005.png 이미지

Fig. 5. Block diagram of the proposed torque compensation algorithm

E1EEFQ_2018_v13n1_160_f0006.png 이미지

Fig. 6. Frequency response characteristics of flux observer

E1EEFQ_2018_v13n1_160_f0007.png 이미지

Fig. 7. Experimental Measurement of the Permanent-Magnet (PM) Temperature of the Test SPMSM

E1EEFQ_2018_v13n1_160_f0008.png 이미지

Fig. 8. Variation of BEMF by temperature

E1EEFQ_2018_v13n1_160_f0009.png 이미지

Fig. 9. Experimental test setup

E1EEFQ_2018_v13n1_160_f0010.png 이미지

Fig. 10. Output waveform with variable torque load atroom temperature. (A) load torque : 10[mNm], (B)load torque : 127[mNm]

E1EEFQ_2018_v13n1_160_f0011.png 이미지

Fig. 11. Output waveform with variable torque load at100[¡ÆC]. (A) load torque : 10[mNm], (B) loadtorque : 127[mNm]

E1EEFQ_2018_v13n1_160_f0012.png 이미지

Fig. 12. Output waveform with variable torque load at100[¡ÆC]. (A) load torque : 10[mNm], (B) loadtorque : 127[mNm]

E1EEFQ_2018_v13n1_160_f0013.png 이미지

Fig. 13. Output waveform of motor performance tester. (A)22 [¡ÆC], (B) 100 [¡ÆC], and (C) (A) vs. (B)

E1EEFQ_2018_v13n1_160_f0014.png 이미지

Fig. 14. Output waveform of motor performance tester at100[¡ÆC]

Table 1. The properties of a SPMSM drive parameter

E1EEFQ_2018_v13n1_160_t0001.png 이미지

References

  1. Hamidreza Behbahanifard and Alireza Sadoughi "Cogging Torque Reduction in Line Start Permanent Magnet Synchronous Motor," Journal of Electrical Engineering & Technology, vol. 11, no. 4, pp. 878- 888, July 2016. https://doi.org/10.5370/JEET.2016.11.4.878
  2. Kim, Chang-Bum, et al. "Parallel Sensorless Speed Control using Flux-axis Current for Dual SPMSMs Fed by a Single Inverter," Journal of Electrical Engineering & Technology, vol. 10, no. 3, pp. 1048- 1057, May 2015. https://doi.org/10.5370/JEET.2015.10.3.1048
  3. Cho, G. W., Jang, W. S., Jang, K. B., & Kim, G. T. "The optimal design of fractional-slot SPM to reduce cogging torque and vibration," Journal of Electrical Engineering & Technology, vol. 7, no. 5, pp. 753-758, September 2012. https://doi.org/10.5370/JEET.2012.7.5.753
  4. E. A. Grunditz and T. Thiringer, "Performance analysis of current BEVs based on a comprehensive review of specifications," IEEE Trans. Transp. Electrif., vol. 2, no. 3, pp. 270-289, 2016. https://doi.org/10.1109/TTE.2016.2571783
  5. A. Rabiei, T. Thiringer, M. Alatalo, and E. Grunditz, "Improved maximum torque per ampere algorithm accounting for core saturation, cross coupling effect and temperature for a PM intended for vehicular applications," IEEE Trans. Transp. Electrif., vol. 2, no. 2, pp. 150-159, 2016. https://doi.org/10.1109/TTE.2016.2528505
  6. S. Li, B. Sarlioglu, S. Jurkovic, N. Patel, and P. Savagian, "Evaluation of torque compensation control algorithm of IPM machines considering the effects of temperature variations," in IEEE Transporation Electrification Conference and Expo (ITEC' 16), 2016.
  7. C. Kral, A. Haumer, and S.B. Lee, "A Practical Thermal Model for the Estimation of Permanent Magnet and Stator Winding Temperatures," IEEE Trans. on Power Electron., vol. 29, no. 1, pp. 455- 464, Jan. 2014. https://doi.org/10.1109/TPEL.2013.2253128
  8. B.H. Lee, K.S. Kim , J.W. Jung , J.P. Hong, and Y.K. Kim, "Temperature Estimation of IPMSM Using Thermal Equivalent Circuit," IEEE Trans. on Magn., vol. 48, no. 11, pp. 2949-2952, Nov. 2012. https://doi.org/10.1109/TMAG.2012.2196503
  9. D. Reigosa, D. Fernandez, H. Yoshida, T. Kato, and F. Briz "Permanent magnet temperature estimation in PMSMs using pulsating high frequency current injection," IEEE Trans. on Ind. Appl., vol. 51, no. 4, pp. 3159-3168, July/Aug. 2015. https://doi.org/10.1109/TIA.2015.2404922
  10. D. Reigosa, F. Briz, P. Garcia, J. M. Guerrero, and M. W. Degner, "Magnet Temperature Estimation in Surface PM Machines Using High Frequency Signal Injection," IEEE Trans. on Ind. Appl., vol. 46, no. 4, pp. 1468-1475, July/Aug. 2010. https://doi.org/10.1109/TIA.2010.2049816
  11. D. Reigosa, D. Fernandez, T. Tanimoto, T. Kato, and F. Briz "Wireless Permanent Magnet Temperature & Field Distribution Measurement System for IPMSMs," Proc. of IEEE ECCE, pp. 3996-4003, Sept. 2015.
  12. D. Fernandez, D. S. Hyun, Y. H. Park, D. Reigosa, S. B. Lee, D. M. Lee, and F. Briz "Permanent magnet temperature estimation in PM synchronous motors using low cost hall effect sensors," in IEEE Energy Conversion Congress and Exposition (ECCE'2016), 2016.
  13. S. Li, B. Sarlioglu, S. Jurkovic, N. Patel, P. Savagian, "Comparative Analysis of Torque Compensation Control Algorithms of Interior Permanent Magnet Machines for Automotive Applications Considering the Effects of Temperature Variation," IEEE Trans. on Transportation Electrification., vol. pp, no. 99, pp. 1-13, Mar. 2017.
  14. R.H.Jr. Welch, G.W. Younkin, "How temperature affects a servomotor's electrical and mechanical time constants," IEEE Industry Applications Conference., Dec. 2002.
  15. R. Welch, "The Basics of Permanent Magnet Motor Operation", A Tutorial Available from Welch Enterprise.