• Title/Summary/Keyword: teaching for problem solving

Search Result 822, Processing Time 0.027 seconds

An Analysis of Current Research on Physics Problem Solving (물리 문제 해결에 관한 최근 연구의 분석)

  • Park, Hac-Kyoo;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.11 no.2
    • /
    • pp.67-77
    • /
    • 1991
  • In this paper, current research papers on Physics Problem Solving were analyzed according to the types of research purpose, method, subject and content of Physics, by using 3 Proceedings and 4 kinds of Journal, that is, the International Workshop(1983, Paris, France) and Conference (1983, Utrecht, The Netherlands) and Seminar(1987, Cornell University, U. S. A.) on Physics Education, and Journal of Research in Science Teaching (1984-1990) and Science Education (1986-1990). and Inter national Journal of Science Education(l987-1988) and Cognitive Science(1989-1990). There were 98 research papers on Problem Solving and among them 37 papers on Physics Problem Solving were selected for analyzing. The results of analysis are as follows; 1) The studies on Model of Novice Student were 22(59%), And those on Model of Desired Preformance, on Model of learning and on Model of Teaching were all much the same. 2) The theoretical studies were 10(27%), and the experimental ones 27(73%). Among the experimental studies, there were 16(59%) by using the written test, and 7(26%) by using the thinking aloud method. 3) The studies about university students as subjects were 20(54%). Probably, it seems the reason that most of researchers on Physics Problem Solving were professors of university or graduate students. 4) Among the various fields of Physics, the studies on Mechanics were 24(63%) and those on E1ectromagnetics 6(16%). or graduate students.

  • PDF

A study on teaching methodology for improving problem-solving skills in high school mathematics (고등학교 문제해결 능력 신장을 위한 교수 학습 방법 연구)

  • 김용규
    • Journal of the Korean School Mathematics Society
    • /
    • v.1 no.1
    • /
    • pp.165-174
    • /
    • 1998
  • This is the study on a teaching method for improving problem-solving ability in mathematics. If this method is performed step by step in solving problems, learners can approach problems in a variety of ways. This step-by-step teaching method will create some changes among learners. The purpose of this experiment was to determine what effects resulted from this method, especially which effects arose in the affective areas of learning math. For the experiment, learning materials were divided into 73 parts. And the subjects, who are low-leveled and have negative attitudes towards mathematics, were divided into two groups. One group was exposed to this method for four months (treatment group), and the other group(control group) was not. According to the result, though there were few changes, the treatment group came to be more interested in math than before and also negative attitudes towards math were reduced gradually, as compared with the control group. In this study, three factors were investigated: interest in math, attitudes toward math, and learning -achievement in math. Significant changes were found in two factors: interest in math and learning-achievement in math. No significant changes were found in the area of attitudes towards math. In conclusion, if this method is adopted and performed regularly, it is likely that the problem-solving skills will be improved and the negative attitudes towards math will be reduced.

  • PDF

A Study on Educational Application of Smart Devices for Enhancing the Effectiveness of Problem Solving Learning (문제해결학습의 효과성 증대를 위한 스마트기기의 교육적 활용에 관한 연구)

  • Kim, Meeyong
    • Journal of Internet Computing and Services
    • /
    • v.15 no.1
    • /
    • pp.143-156
    • /
    • 2014
  • The smart education has the goal of enhancing the capability of learners in the 21st century and especially address the improvement of the problem solving capability. This smart education based on the growth of smart devices and the effect of dramatical spread requires the ability of problem solving using the smart technology in accordance with time change. As the problem solving learning is a model used mainly for improving the capability of problem solving, this study develops the problem solving learning model focusing on the teaching-learning activity using the smart devices and also applies this model to the school field. As a result, the favorable response that using the smart devices is effective to the problem solving can be obtained. This study can contribute to achieve the goal of the smart education, and later can be effective to the successful smart education in the school field.

An Analysis of Third Graders' Representations and Elaborating Processes of Representations in Mathematical Problem Solving (초등학교 3학년 학생의 수학적 문제 해결에서의 표상과 표상의 정교화 과정 분석)

  • Lee, Yang-Mi;Jeon, Pyung-Kook
    • The Mathematical Education
    • /
    • v.44 no.4 s.111
    • /
    • pp.627-651
    • /
    • 2005
  • This study was conducted to attain an in-depth understanding of students' mathematical representations and to present the educational implications for teaching them. Twelve mathematical tasks were developed according to the six types of problems. A task performance was executed to 151 third graders from four classes in DaeJeon and GyeongGi. We analyzed the types and forms of representations generated by them. Then, qualitative case studies were conducted on two small-groups of five from two classes in GyeongGi. We analyzed how individuals' representations became elaborated into group representation and what patterns emerged during the collaborative small-group learning. From the results, most students used more than one representation in solving a problem, but they were not fluent enough to link them to successful problem solving or to transfer correctly among them. Students refined their representations into more meaningful group representation through peer interaction, self-reflection, etc.. Teachers need to give students opportunities to think through, and choose from, various representations in problem solving. We also need the in-depth understanding and great insights into students' representations for teaching.

  • PDF

An Updated Evidence-based Practice Review on Teaching Mathematics to Students with Intellectual Disabilities

  • Alhwaiti, Mohammed M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.255-265
    • /
    • 2022
  • Educational programs for students with intellectual disabilities have undergone drastic changes in pursuit of the general curriculum. Accordingly, teachers in various fields, including mathematics, strive to find effective methods that enhance learning. The objective of this systematic review is to examine the field of teaching mathematics to students with intellectual disabilities to investigate relevant effective teaching strategies and required teaching skills. To achieve this goal, studies published during the period 2018-2021 were reviewed. Findings indicate the inclusion of nine studies that met the inclusion criteria out of 55 studies. The included studies found that the system of least prompts (SLP) in conjunction with feedback and error correction, and schema-based instruction are generally the most effective strategies in teaching mathematical skills to students with intellectual disabilities. Addition is the most targeted skill, followed by subtraction and algebra problem solving. The least targeted skills are multiplication, recognition of geometric shapes, calculating price after discount, rapid recognition of numbers, and rapid problem solving. The paper provides recommendations and suggests venues of future research.

Polanyi's Epistemology and the Tacit Dimension in Problem Solving (폴라니의 인식론과 문제해결의 암묵적 차원)

  • Nam, Jin-Young;Hong, Jin-Kon
    • Journal for History of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.113-130
    • /
    • 2009
  • It can be said that the teaching and learning of mathematical problem solving has been greatly influenced by G. Polya. His heuristics shows down the explicit process of mathematical problem solving in detail. In contrast, Polanyi highlights the implicit dimension of the process. Polanyi's theory can play complementary role with Polya's theory. This study outlined the epistemology of Polanyi and his theory of problem solving. Regarding the knowledge and knowing as a work of the whole mind, Polanyi emphasizes devotion and absorption to the problem at work together with the intelligence and feeling. And the role of teachers are essential in a sense that students can learn implicit knowledge from them. However, our high school students do not seem to take enough time and effort to the problem solving. Nor do they request school teachers' help. According to Polanyi, this attitude can cause a serious problem in teaching and learning of mathematical problem solving.

  • PDF

Application of '圓容三方互求' as a Mathematically Challenging Problem for Mathematically Gifted Elementary Students (초등 수학영재의 도전적 문제 상황을 위한 원용삼방호구(圓容三方互求)의 활용)

  • Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.17-30
    • /
    • 2016
  • This study focused on the selection and application of mathematical problems to provide mathematically challenging tasks for the gifted elementary students. For the selection, a mathematical problem from <算術管見> of Joseon dynasty, '圓容三方互求', was selected, considering the participants' experiences of problem solving and the variety of approaches to the problem. For the application, teaching strategies such as individual problem solving and sharing of the solving methods were used. The problem was provided for 13 mathematically gifted elementary students. They not only solved it individually but also shared their approaches by presentations. Their solving and sharing processes were observed and their results were analyzed. Based on this, some didactical considerations were suggested.

A Study on Teaching-Learning programs of Mathematics Education and Mathematics History Related Courses for Training of Mathematics Teacher of Secondary Schools (중등 교사 양성을 위한 수학교육학 및 수학사 강좌에 대한 연구)

  • 한인기
    • The Mathematical Education
    • /
    • v.42 no.4
    • /
    • pp.465-480
    • /
    • 2003
  • The main purpose of this work is to propose programs of mathematics education and mathematics history courses for the department of mathematics education of teacher training universities. Foundation of Mathematics Education, Mathematics Teaching and Learning Theories, Mathematics Problem Solving, Analysis and Evaluation of Mathematics Teaching Materials and Mathematics History are discussed in this article.

  • PDF

Enhancing Geometry and Measurement Learning Experiences through Rigorous Problem Solving and Equitable Instruction

  • Seshaiyer, Padmanabhan;Suh, Jennifer
    • Research in Mathematical Education
    • /
    • v.25 no.3
    • /
    • pp.201-225
    • /
    • 2022
  • This paper details case study vignettes that focus on enhancing the teaching and learning of geometry and measurement in the elementary grades with attention to pedagogical practices for teaching through problem solving with rigor and centering equitable teaching practices. Rigor is a matter of equity and opportunity (Dana Center, 2019). Rigor matters for each and every student and yet research indicates historically disadvantaged and underserved groups have more of an opportunity gap when it comes to rigorous mathematics instruction (NCTM, 2020). Along with providing a conceptual framework that focuses on the importance of equitable instruction, our study unpacks ways teachers can leverage their deep understanding of geometry and measurement learning trajectories to amplify the mathematics through rigorous problems using multiple approaches including learning by doing, challenged-based and mathematical modeling instruction. Through these vignettes, we provide examples of tasks taught through rigorous problem solving approaches that support conceptual teaching and learning of geometry and measurement. Specifically, each of the three vignettes presented includes a task that was implemented in an elementary classroom and a vertically articulated task that engaged teachers in a professional learning workshop. By beginning with elementary tasks to more sophisticated concepts in higher grades, we demonstrate how vertically articulating a deeper understanding of the learning trajectory in geometric thinking can add to the rigor of the mathematics.

Comparative Study on Self-leadership, Team Efficacy, Problem Solving Process and Task Satisfaction of Nursing Students in Response to Clinical Training (임상 실습과제 방법에 따른 간호학생의 셀프리더십, 팀효능감, 문제해결과정 및 과제만족도 비교연구)

  • Kim, Jung Hyo;Park, Mi Kyung
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.20 no.4
    • /
    • pp.482-490
    • /
    • 2014
  • Purpose: This research compares self-leadership, team efficacy, problem solving processes and task satisfaction in response to teaching methods applied to nursing students, and determines whether variations exist. Method: This research experiments before and after the training of a nonequivalent group. The subjects were 36 learners of action learning methods and 39 learners of nursing course methods, and the research took place from October through December 2012. Results: Prior to the training, the general features and measurable variables of the two groups of subjects were similar, and self-leadership, team efficacy, problem solving process and task satisfaction in both groups were elevated compared to pre-training. In particular, in comparison with the nursing course, there was a notable difference in scores, the action learning method receiving high scores in the problem solving process (t=2.92, p=.005) and task satisfaction (t=2.54, p=.013) Conclusion: It is recommended that educators not only conduct the practice training course for teaching methods, but also incorporate action learning.