• Title/Summary/Keyword: tandem queue

Search Result 10, Processing Time 0.031 seconds

Approximate Analysis of the Discrete-time 2-Node Tandem Queueing Network with a Correlated Batch Input Traffic (상관적인 Batch 입력을 갖는 2-노드 Tandem 구조의 이산시간 대기 네트워크의 근사적 분석)

  • Park, Du-Yeong
    • The Journal of Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.31-40
    • /
    • 1997
  • We first describe an approximation method for fitting a k-state MMBP to the departure process of a D-BMAP/Geo/1/K queue. The fitting model is them used in a simple decomposition algorithm to analyze a tandem configuration of finite capacity queue with cell loss.

  • PDF

AN APPROXIMATE ANALYSIS OF TANDEM QUEUES WITH GENERAL BLOCKING NODES

  • SHIN, YANG WOO;KIM, DONG OK;MOON, DUG HEE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.26 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • A tandem queue that consists of nodes with buffers of finite capacity and general blocking scheme is considered. The service time distribution of each node is exponential whose rate depends on the state of the node. The blocking scheme at a node may be different from that of other nodes. An approximation method for the system based on decomposition method is presented. The effectiveness of the method is investigated numerically.

Comparison of CONWIP with Kanban in a Production Line with Constant Processing Times (상수 공정시간을 갖는 라인 생산 시스템에서 CONWIP과 간반의 성능 비교)

  • Lee, Ho-Chang;Seo, Dong-Won
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.2
    • /
    • pp.51-65
    • /
    • 2011
  • We compared a CONWIP(constant work-in-process) system with a kanban system in a production line with constant processing times. Based on the observation that a WIP-controlled line production system such as CONWIP and kanban is equivalent to a m-node tandem queue with finite buffer, we applied a max-plus algebra based solution method for the tandem queue to evaluate the performance of two systems. Numerical examples with 6 workstations were used to demonstrate the proposed analysis. The numerical results support the previous studies that CONWIP outperforms kanban in terms of expected waiting time and WIP. Unlike the kanban case, sequencing workstations in a CONWIP does not affect the performance of the system.

Comparison of DBR with CONWIP in a Production Line with Constant Processing Times (상수 공정 시간을 갖는 라인 생산 시스템에서 DBR과 CONWIP의 성능 비교 분석)

  • Lee, Hochang;Seo, Dong-Won
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.11-24
    • /
    • 2012
  • We compared a DBR(drum-buffer-rope) system with a CONWIP(constant work-in-process) system in a production line with constant processing times. Based on the observation that a WIP-controlled line production system such as DBR and CONWIP is equivalent to a m-node tandem queue with finite buffer, we applied a max-plus algebra based solution method for the tandem queue to evaluate the performance of two systems. Numerical examples with 6 workstations were also used to demonstrate the proposed analysis. The mathematical analyses support that CONWIP outperforms DBR in terms of expected waiting time and WIP. Unlike the CONWIP case, sequencing workstations in a DBR affects the performance of the system. Delaying a bottleneck station in a DBR reduces expected waiting time.

Optimal Buffer Allocation in Tandem Queues with Communication Blocking

  • Seo, Dong-Won;Ko, Sung-Seok;Jung, Uk
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.86-88
    • /
    • 2009
  • In this letter, we consider an m-node tandem queue (queues in series) with a Poisson arrival process and either deterministic or non-overlapping service times. With the assumption that each node has a finite buffer except for the first node, we show the non-increasing convex property of stationary waiting time with respect to the finite buffer capacities. We apply it to an optimization problem which determines the smallest buffer capacities subject to probabilistic constraints on stationary waiting times.

  • PDF

Analysis of Finite Tandem Queues in Computer Communication Network (컴퓨터 통신망의 유한 길이 탄뎀 큐에 대한 해석)

  • 조진웅;이재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.6
    • /
    • pp.545-553
    • /
    • 1987
  • An approximation algorithm has been obtained to analyze the network of single server tandem queues with a finite length. In the queueing network with a finite queue length, the blocking which is mutually dependent, occure due to the limitation of the queue length. Thus, it is difficults to analyze such a queueing network. In this paper each queue has been regarded as the independent M/M/1/K system to analyze the queueing network with the blocking, which is based on the assumption that an arrival rate to the present station is increased by the blocking of the following stations. The performance measures, such as state probability, average queue length and tha waiting time, can be easily obtained using the proposed algorithm. In order to justify this approximation algorithm, comparison of the results of this algorithm with those of state transition simultaneous equations has been made an verified with computer simulation.

  • PDF

Analysis of Optimal Buffer Capacities in 3-node Tandem Queues with Blocking (3-노(盧)드 유한 버퍼 일렬대기행렬에서의 최적 버퍼 크기에 대한 분석)

  • Seo, Dong-Won
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.881-889
    • /
    • 2005
  • In this study, we consider characteristics of waiting times in single-server 3-node tandem queues with a Poisson arrival process, finite buffers and deterministic or non-overlapping service times at each queue. There are three buffers: one at the first node is infinite and the others are finite. The explicit expressions of waiting times in all areas of the systems, which are driven as functions of finite buffer capacities, show that the sojourn time does not depend on the finite buffer capacities and also allow one to compute and compare characteristics of waiting times at all areas of the system under two blocking policies: communication and manufacturing blocking. As an application of these results, moreover, an optimization problem which determines the smallest buffer capacities satisfying predetermined probabilistic constraints on waiting times is considered. Some numerical examples are also provided.

  • PDF

Analysis of a Departure Process on the Population Constrained Tandem Queueing Network with Constant Service Times (사용자수 제한과 상수 서비스시간을 갖는 개방형 대기행렬의 출력 프로세스에 관한 연구)

  • Young Rhee
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.25 no.1
    • /
    • pp.15-26
    • /
    • 2000
  • We consider an open tandem queueing network with population constraint and constant service times. The total number of customers that may be present in the network can not exceed a given value k. Customers arriving at the queueing network when there are more than k customers are forced to walt in an external queue. The arrival process to the queueing network is assumed to be arbitrary. It is known that the queueing network with population constrant and constant service times can be transformed into a simple network involving only two nodes. In this paper, the departure process from the queueing network is examined using this simple network. An approximation can be calculated with accuracy. Finally, validations against simulation data establish the tightness of these.

  • PDF

Analysis of Transfer Lines with Finite Storage Buffers (제한된 크기의 버퍼를 가진 생산 시스템의 분석)

  • 허성관;하정진
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.15 no.26
    • /
    • pp.151-157
    • /
    • 1992
  • This paper presents a method for analyzing the transfer lines with finite storage buffers. Each machine spends a random amount of time processing each material. This transfer line can be modeled by the tandem queueing system with finite buffers. The great dimensionality of the state space renders the analysis of such system a formidable task. We propose an efficient algorithm to obtain the marginal state probabilities based on the exact algorithm for the two-machine system. Other performance measures, such as the utilization, the blocking probability, the average sojourn time, and the average queue length, can be easily calculated.

  • PDF

Modeling and Performance Evaluation of the Web server supporting Persistent Connection (Persistent Connection을 지원하는 웹서버 모델링 및 성능분석)

  • Min, Byeong-Seok;Nam, Ui-Seok;Lee, Sang-Mun;Sim, Yeong-Seok;Kim, Hak-Bae
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.605-614
    • /
    • 2002
  • Amount of the web traffic web server handles are explosively increasing, which requires that the performance of the web server should be improved for the various web services. Although the analysis for the HTTP traffic with the proper tuning for the web server is essential, the research relevant to the subject are insignificant. In particular, although most of applications are implemented over HTTP 1.1 protocol, the researches mostly deal with the performance evaluation of the HTTP 1.0 protocol. Consequently, the modeling approach and the performance evaluation over HTTP 1.1 protocol have not been well formed. Therefore, basing on the HTTP 1.1 protocol supporting persistent connection, we present an analytical end-to-end tandem queueing model for web server to consider the specific hardware configuration inside web server beginning at accepting the user request until completing the service. we compare various performances between HTTP 1.0 and HTTP 1.1 under the overloading condition, and then analyze the characteristics of the HTTP traffic that include file size requested to web server, the OFF time between file transfers, the frequency of requests, and the temporal locality of requests. Presented model is verified through the comparing the server throughput according to varying requests rate with the real web server. Thereafter, we analyze the performance evaluation of the web server, according to the interrelation between TCP Listen queue size, the number of HTTP threads and the size of the network buffers.