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ABSTRACT. A tandem queue that consists of nodes with buffers of finite capacity and general
blocking scheme is considered. The service time distribution of each node is exponential whose
rate depends on the state of the node. The blocking scheme at a node may be different from
that of other nodes. An approximation method for the system based on decomposition method
is presented. The effectiveness of the method is investigated numerically.

1. INTRODUCTION

Tandem queue is a queueing network in which service nodes are linked along a single flow
path one after another and customers arrive from outside at the first node and are processed
at the nodes in sequence, and leave the system from the last node. Tandem queues with fi-
nite capacity nodes have been widely used for performance modeling of computer systems,
telecommunication networks and manufacturing systems [1, 2, 3]. The limited buffer capacity
leads to the blocking phenomenon. When a node reaches its maximum capacity, the flow of
customers from the upstream node into the downstream node is stopped, and the blocking phe-
nomenon arises. Various blocking mechanisms in queueing networks with finite capacity nodes
have been introduced in the literature to represent distinct behaviors of real systems [4]. The
blocking type mostly used in modelling manufacturing systems is blocking after service (BAS)
scheme, or sometimes called manufacturing blocking, in which if the buffer of the destination
node is full upon a service completion at a node, the server is forced to stop its service, and the
customer is held at the node where it has recently completed its service until the destination
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can accommodate it. Under the blocking before service (BBS) scheme, sometimes called com-
munication blocking, the server at each node checks the state of the destination node before
starting a service and if there is an available space at the destination node, then the server starts
its service, otherwise, the server is blocked and does not start its service. Two subcategories of
BBS scheme distinguish whether the server can be used as a buffer when the node is blocked,
called BBS-SO (server occupied) or not, called BBS-SNO (server not occupied). Another type
of blocking scheme is kanban blocking under which the customers blocked upon a service
completion share the buffer space of the node along with the other customers that are either
waiting for service or being served, and the server continues processing customers in the node
unless the server is not blocked. Cheng and Yao [5] develop a general blocking (GB) scheme
by introducing parameters for the upper limits on the number of customers waiting in buffer
and being in service, the number of blocked customers, and the capacity of the node. The
GB scheme includes ordinary manufacturing, communication, and kanban blocking as special
cases by specifying the values of the parameters in different ways. The structural properties in
tandem queues with GB scheme such as the line reversibility and the effects of system param-
eters, buffer size, variability of service time and the control parameters of the blocking scheme
to the system performance are presented in [5, 6, 7]. In this paper, we focus on the quantitative
(numerical) method for the analysis of the tandem queues with exponential service time under
GB scheme.

Models with finite buffers and exponential service times can be represented by finite state
Markov chains. However, a numerical solution of the associated Markov chain is seriously
limited by the complexity of state space and computational time that grow exponentially as the
number of nodes increases. Hence, approximate analytical methods and simulation have been
used for numerical analysis of the system as alternatives of exact solution.

Many approximation methods for queueing networks with blocking have been proposed in
literature both for open and closed models and surveys of some methods have been presented
[8, 9, 1, 2]. One of the most common method among the approximation techniques is decom-
position method in which the original long line is decomposed into subsystem that are mathe-
matically tractable, and the performance of original system is approximated by that of the sub-
systems. For more about decomposition method for tandem queues, see e.g. [10, 11, 12, 13].
Most of the works cited above pertain queueing systems under BAS blocking strategy.

The objective of this paper is to present an approximate analysis for the tandem queue with
finite buffer under general blocking scheme. The processing time at each node is exponentially
distributed and the service rate depends both on the number of customers that are waiting for
service in queue or being served and the number of blocked customers. This system includes
the tandem queue with multiple servers and general blocking at each node as a special case by
specifying the service rates. Our approach is based on decomposition method. The contribution
of this paper is to present an approximation method for a very general model in blocking
mechanism sense. The method is very effective in accuracy and computation time.

The paper is organized as follows. In Section 2 we describe the model in detail. Some
preliminaries and subsystem are presented in Sections 3 and 4, respectively. Approximate
formulae for the parameters of subsystems are presented in Section 5 and an algorithm for
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calculating performance measures is given in Section 6. Application of the result to the sys-
tem with multiple servers is described in Section 7. The results of the approximation method
are compared numerically with simulation and existing methods in Section 8. Finally, some
concluding remarks are given in Section 9.

2. MODEL AND ASSUMPTIONS

We consider a tandem queueing network L that consists of N nodes Wi with finite capacity
ci < ∞ , i = 1, 2, · · · , N . The customers arrive from outside according to a Poisson process
whose rate depends on the state of the first node and customers at Wi are processed (served)
according to an exponential distribution whose rate depends on the state of Wi. The blocked
customer is the one that has completed service at a node, but cannot be sent to the next node
due to a limited buffer capacity of the downstream node. The blocked customers may continue
to share the buffer space of the node along with the other customers that are either waiting for
service or being served upon. We classify the customers at node Wi into two types, blocked
customers (BC) and active customers (AC) that are waiting for service or being in service at
node Wi.

Blocking scheme. The blocking process of each node is controlled by three parameters
(ai, bi, ci), where ai and bi are the upper limits on the number of active customers and blocked
customers at Wi, respectively, and ci is the capacity of Wi. It is natural to assume that

1 ≤ ai ≤ ci, 0 ≤ bi ≤ ci, ai + bi ≥ ci.

We assume that the last node is never blocked and bN = 0.
The features of the node with bi > 0 are different from those of the node with bi = 0. In case

of bi = 0, Wi cannot hold any blocked customers and the node follows the BBS rule. If bi > 0,
then the behavior (blocking or joining to the next node) of the customers in Wi is determined
after a service completion. We describe the behaviors of two types of nodes separately.

(i) The case of bi > 0. Upon a service completion at Wi, if there are no places available for
active customers in Wi+1, that is, the number of active customers at Wi+1 is ai+1 or total num-
ber of customers at Wi+1 is ci+1, then the customer just completed its service is blocked and is
stocked atWi. If the number of blocked customers atWi reaches bi upon a service completion,
then the service process at Wi is forced to stop. Even the service process is stopped, the node
Wi can hold active customers arriving from the upstream node Wi−1 if there is an available
space for active customers at Wi.

(ii) The case of bi = 0. In this case, if the number of active customers in Wi+1 reaches ai+1

or total number of customers in Wi+1 reaches ci+1, the service process at Wi is forced to stop
until there is an available space for active customers in Wi+1. The idle server can accept an
active customer even it is stopped its service, that is, Wi follows BBS-SO blocking scheme.
The node Wi starts new service upon there is a place available for active customers at Wi+1.
Hereafter BBS means BBS-SO blocking. Define the state of service process at Wi at time t by

Mi(t) =

{
0∗, service process at Wi is stopped,
0, otherwise.
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Service time. The distribution of service time at node Wi is exponential and the service rate
may depend on the state of the node Wi. Denote the service rate by µi(x, y), where x is the
number of AC and y is the number of BC for bi > 0, and for bi = 0, y is the server state at Wi.
It can be seen from the assumption that µi(x, bi) = 0 for bi > 0 and µi(x, 0∗) = 0 for bi = 0,
and µi(0, y) = 0.

Arrival process from source node. Customers arrive to the first node W1 from the source
node (or outside) W0 according to a Poisson process whose rate depends on the state of W1.
The node W0 is assumed to be never starved. Denote the arrival rate to the first node W1 by
λ1(x, y), where x is the number of AC, and for b1 > 0, y is the number of BC at W1 and for
b1 = 0, y ∈ {0, 0∗} is the server state of W1.

3. STOCHASTIC PROCESSES AND TRANSITION RATES

3.1. Stochastic processes. LetXa
i (t) and Yi(t) be the number of active customers and blocked

customers, respectively, in Wi at time t, and Xi(t) = Xa
i (t) + Yi−1(t), Zi(t) = Xi(t) + Yi(t).

For describing the behavior of the node Wi, we use two dimensional stochastic processes

Vi(t) = (Zi(t), Xi(t)),

Wi(t) =

{
(Xi(t), Yi(t)), bi > 0,
(Xi(t),Mi(t)), bi = 0.

Let ξi = ai + bi−1 and κi = ci + bi−1, i = 1, 2, · · · , N . The state space of Zi(t) is Zi =
{0, 1, · · · , κi}. Once Zi(t) = n is given, it can be seen from 0 ≤ Xi(t) ≤ ξi and 0 ≤ Yi(t) ≤
bi that li(n) ≤ Xi(t) ≤ ui(n), where

li(n) = max(n− bi, 0), ui(n) = min(n, ξi).

Note that if Yi(t) = y is given, then 0 ≤ Xi(t) ≤ x∗i (y), where

x∗i (y) = min(ξi, κi − y).

The state space Vi of Vi(t) and the spaceWi of Wi(t) are as follow:

Vi = {(n, x) : li(n) ≤ x ≤ ui(n), 0 ≤ n ≤ κi} ,

Wi =

{
{(x, y) : 0 ≤ x ≤ x∗i (y), 0 ≤ y ≤ bi} , bi > 0,
{(x, 0) (x, 0∗) : 0 ≤ x ≤ ξi} , bi = 0.

Note that for given Vi(t) = (n, x), the maximal value xi−1(n, x) of Xi−1(t) and the state
yi−1(n, x) of Yi−1(t) for bi−1 > 0 are determined by

yi−1(n, x) = max(0, n− ci, x− ai),
xi−1(n, x) = max(ξi−1, κi−1 − yi−1(n, x)).

and the state of Mi−1(t) for bi−1 = 0 is

Mi−1(t) =

{
0, n < ci and x < ai,
0∗, n = ci or x = ai.
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Let
Di−1 = {(n, x) ∈ Vi : li(n) ≤ x ≤ min(n, ai − 1), 0 ≤ n ≤ ci − 1}

and for 0 ≤ y ≤ bi−1,

Bi−1(y) = {(ci + y, x) ∈ Vi : li(ci + y) ≤ x ≤ ai + y}
∪{(n, ai + y) ∈ Vi : ai + y ≤ n < ci + y}.

Noting thatDi−1 is the set of states of Vi(t) on which there is an available space for active cus-
tomers in Wi and Bi−1(0) is the set on which there are no places available for active customers
in Wi and Yi−1(t) = 0, it can be seen that for bi−1 > 0,

{Yi−1(t) = 0} = {Vi(t) ∈ Di−1 ∪ Bi−1(0)}, (3.1)
{Yi−1(t) = y} = {Vi(t) ∈ Bi−1(y)}, 1 ≤ y ≤ bi−1,

and for bi−1 = 0,

{Mi−1(t) = 0} = {Vi(t) ∈ Di−1}, (3.2)

{Mi−1(t) = 0∗} =

{
{Vi(t) ∈ Bi−1(0)}, bi > 0,
{Wi(t) ∈ {(ci, 0), (ci, 0

∗)}}, bi = 0.

We introduce notation for later use. For given Vi(t) = (n, x), we write the state of Yi−1(t)
for bi−1 > 0 and Mi−1(t) for bi−1 = 0 by a unified form

y∗i−1(n, x) =

 yi−1(n, x), bi−1 > 0,
0, (n, x) ∈ Di−1, bi−1 = 0,
0∗, (n, x) ∈ Bi−1(0), bi−1 = 0

and y∗i−1(x+ 0∗, x) means y∗i−1(x, x).

3.2. Transition rates of Wi(t). Given Wi(t) = (x, y) ∈ Wi, the state transitions of Wi(t) are
occurred by a service completion at Wi−1 or Wi, a departure of blocked customers from Wi

for bi > 0, and a departure from Wi+1 for bi = 0 and y = 0∗. Now we derive the transition
rates of Wi(t) for each case described above.

(i) The rate λi(x, y) from (x, y) to (x + 1, y). The transition from (x, y) to (x + 1, y) is
occurred by a service completion at Wi−1 and the rate is for 2 ≤ i ≤ N − 1,

λi(x, y) =

h∑
j=1

P (Xi−1(t) = j|Wi(t) = (x, y))µi−1(j, k),

where h = xi−1(x+ y, x) and k = y∗i−1(x+ y, x).
(ii) The rate βi(x, y) from (x, y) to (x − 1, y + 1) for bi > 0. Given Wi(t) = (x, 0), the

customer being served at Wi is blocked to enter the next node Wi+1 upon a service completion
if there are no places available for active customers. Thus for 1 ≤ x ≤ ξi,

βi(x, 0) = P (Vi+1(t) ∈ Bi(0)|Wi(t) = (x, 0))µi(x, 0).

If 1 ≤ y ≤ bi − 1, the customer is blocked upon it service completion and hence

βi(x, y) = µi(x, y), 1 ≤ x ≤ x∗i (y), 1 ≤ y ≤ bi − 1.
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(iii) The rate δi(x, 0) from Wi(t) = (x, 0) to (x− 1, 0) for bi > 0. It can be seen from (3.1)
that

δi(x, 0) = P (Vi+1(t) ∈ Di|Wi(t) = (x, 0))µi(x, 0)

= µi(x, 0)− βi(x, 0), 1 ≤ x ≤ ξi.

(iv) The rate β0i (x) from working state (x, 0) to blocking state (x − 1, 0∗) in the node with
bi = 0. Let

D0
i = {(ci+1 − 1, x) ∈ Vi+1 : li+1(ci+1 − 1) ≤ x ≤ ai+1 − 1}

∪{(n, ai+1 − 1) : ai+1 − 1 ≤ n < ci+1 − 1}.

If Vi+1(t) ∈ D0
i , then there is only one place available for active customers in Wi+1 at time t.

The transition of Wi(t) from (x, 0) to (x− 1, 0∗) occurs if a service at Wi is completed on D0
i .

Thus the rate from (x, 0) to (x− 1, 0∗) is for 1 ≤ x ≤ ξi,

β0i (x) = P
(
Vi+1(t) ∈ D0

i |Wi(t) = (x, 0)
)
µi(x, 0)

(v) The rate δ0i (x) from (x, 0) to (x − 1, 0) in the node with bi = 0. In case of bi = 0,
customers at Wi join Wi+1 upon a service completion and the resulting state of Mi(t) is one
of the two states 0 or 0∗. It can be seen from (3.2) that

δ0i (x) = µi(x, 0)− β0i (x), 1 ≤ x ≤ ξi.

(vi) The rate δi(x, y) from Wi(t) = (x, y) to (x, y − 1), y ≥ 1. Let

B̃i(y) = {(n′, x′) ∈ Bi(y) : yi(n
′ − 1, x′) = y − 1, n′ > x′}

∪{(ai+1 + y, ai+1 + y)}.

If Vi+1(t) ∈ B̃i(y) with y ≥ 1 and a departure from the node Wi+1 occurs, then the resulting
state of Vi+1(t) is in B̃i(y− 1). If Wi(t) = (x, y) with y ≥ 1, a departure from Wi is occurred
by a departure from Wi+1 on B̃i(y) and hence for y ≥ 1

δi(x, y) =
∑

(n′,x′)∈B̃i(y)

P (Vi+1(t) = (n′, x′)|Wi(t) = (x, y))δ∗i+1(x
′, n′ − x′),

where

δ∗i+1(x
′, n′ − x′) =

{
δi+1(x

′, n′ − x′), bi+1 > 0,
δ0i+1(x

′), bi+1 = 0

with δN (x, 0) = µN (x, 0) and δN (x, y) = 0, y ≥ 1. Noting that for bi+1 = 0, Bi(y) =
{(ci+1 + y, ci+1 + y)}, it can be seen that for bi+1 = 0,

δi(x, y) = µi+1(ci+1 + y, 0), 1 ≤ y ≤ bi.

(vii) The rate αi(x) from blocking state (x, 0∗) to working state (x, 0) in the node with
bi = 0. The transition of Wi(t) from (x, 0∗) to (x, 0) is occurred by one of two types of
departures from Wi+1, a departure of an active customer on Vi+1(t) = (ai+1, ai+1) and a
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departure of a blocked customer on Vi+1(t) = (ci+1, x
′) with x′ < ai+1. It can be seen that

for bi+1 > 0,

αi(n) = P (Vi+1(t) = (ai+1, ai+1)|Wi(t) = (n, 0∗))δi+1(ai+1, ai+1)

+

ai+1−1∑
x=li+1(ci+1)

P (Vi+1(t) = (ci+1, x)|Wi(t) = (n, 0∗)δi+1(x, ci+1 − x)

and for bi+1 = 0,
αi(n) = µi+1(ci+1, 0).

4. SUBSYSTEMS

We decompose the system into N − 1 subsystems Li, i = 2, 3, · · · , N for an approximate
analysis using decomposition method. The subsystem Li is a tandem queue that consists of
two nodes, say W u

i−1 and W d
i which are pseudo nodes that correspond to Wi−1 and Wi, re-

spectively. The node W u
i−1 has a buffer of size gui−1 = gi−1 + bi−2, and the capacity of W u

i−1
is κui−1 = κi−1, the capacity for active customers is aui−1 = ξi−1, the capacity for blocked cus-
tomers is bui−1 = bi−1. Customers arrive to the first node W u

i−1 according to a Poisson process
with rate λi−1(j, k) and the service rate is µi−1(j, k), when Wi−1(t) = (j, k). The parameters
for W d

i are the same as Wi. The throughput of L is approximated with that of LN . Since W1

and WN have different features from that of Wi, 2 ≤ i ≤ N − 1, we describe the subsystems
Li (2 ≤ i ≤ N − 1) and LN separately.

4.1. The subsystem Li with bi > 0, 2 ≤ i ≤ N − 1. For describing the subsystem Li with
bi > 0, define the stochastic processes Ψi(t) = (Zi(t), Xi(t), Xi−1(t)), 2 ≤ i ≤ N − 1. The
state space Si of ΨΨΨi = {Ψi(t), t ≥ 0} is Si = ∪κin=0Si(n), where

Si(n) = {(n, x, j) : 0 ≤ j ≤ xi−1(n, x), li(n) ≤ x ≤ ui(n)}, 2 ≤ i ≤ N − 1,

It can be easily seen that the number of states in Si(n) is

si(n) =

ui(n)∑
x=li(n)

(xi−1(n, x) + 1), 2 ≤ i ≤ N − 1.

The stochastic process ΨΨΨi = {Ψi(t), t ≥ 0} forms a Markov chain on the state space Si
with generator of the form

Qi =


B

(0)
i A

(0)
i

C
(1)
i B

(1)
i A

(1)
i

. . . . . . . . .

C
(κi−1)
i B

(κi−1)
i A

(κi−1)
i

C
(κi)
i B

(κi)
i

−∆i, (4.1)

where ∆i is the diagonal matrix that makes Qie = 0 and e is the column vector of appropriate
size whose components are all 1. The block matrix B(n)

i is the square matrix of size si(n)
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whose diagonals entries are all 0 and their off-diagonal components correspond to the transition
rates in Si(n) without changing the level Zi(t) = n. The components of the block matrices
A

(n)
i and C(n)

i are the transition rates of ΨΨΨi from the states of Si(n) to the states of Si(n + 1)
and Si(n− 1), respectively.

In this subsection, for given (Zi(t), Xi(t)) = (n, x), denote the maximal number of active
customers at Wi−1 by h = xi−1(n, x) for the simplicity of notation unless confusion.

The matrices A(n)
i . For each (n, x), (n+ 1, x′) ∈ Vi, denote by A(n)

i [x, x′] the block matrix
component of size (h + 1) × (xi−1(n + 1, x′) + 1) whose (j, j′)-entry corresponds to the
transition rate from (n, x, j) ∈ Si(n) to (n + 1, x′, j′) ∈ Si(n + 1). It can be easily seen that
A

(n)
i [x, x′] = 0 for x′ 6= x+ 1 and that for li(n) ≤ x ≤ ui(n), li(n+ 1) ≤ x+ 1 ≤ ui(n+ 1),

the (j, j′)-component of A(n)
i [x, x+ 1], 0 ≤ j ≤ h, 0 ≤ j′ ≤ xi−1(n+ 1, x+ 1) is[

A
(n)
i [x, x+ 1]

]
jj′

= µi−1(j, y
∗
i−1(n, x))1(j′ = j − 1),

where 1(A) = 1 if A is true, otherwise 0.
The matrices B(n)

i . For (n, x), (n, x′) ∈ Vi, let B(n)
i [x, x′] the block matrix component of

size (xi−1(n, x) + 1)× (xi−1(n, x
′) + 1) whose (j, j′)-entry corresponds to the transition rate

from (n, x, j) ∈ Si(n) to (n, x′, j′) ∈ Si(n). The transition of ΨΨΨi without changing the level
occurs by a service completion at Wi−2 and blocking of a customer just completed its service
at Wi.

(i) Service completion at Wi−2. Note that if a service is completed at the node Wi−2, then
the transition of [ΨΨΨi from (n, x, j) to (n, x, j + 1) occurs, and given Wi−1(t) = (j, k), the
service at Wi−2 does not depend on the state (n, x) of Vi(t). Thus the transition rate from
(n, x, j) to (n, x, j + 1) is λi−1(j, k) and the upper diagonal entries of matrix B(n)

i [x, x] is
λi−1(j, k) and others are all zero, that is, the (j, j′)-component of B(n)

i [x, x] is for 0 ≤ j, j′ ≤
h, [

B
(n)
i [x, x]

]
jj′

= λi−1(j, y
∗
i−1(n, x))1(j′ = j + 1).

(ii) Occurrence of blocking atWi. If a customer atWi is blocked upon a service completion
on the state Ψi(t) = (n, x, j), the resulting state of Ψi(t) immediately after an occurrence of
blocking is (n, x − 1, j). Thus the (j, j′)-component of B(n)

i [x, x − 1] is for 0 ≤ j ≤ h and
0 ≤ j′ ≤ xi−1(n, x− 1),[

B
(n)
i [x, x− 1]

]
jj′

= βi(x, n− x)1(j′ = j).

The matrices C(n)
i . Each component of C(n)

i corresponds to the transition rate from a state
in Si(n) to a state in Si(n − 1) which is occurred by a departure of an active customer or a
blocked customer from Wi. A departure of an active customer results in the state transition
from (n, n, j) to (n− 1, n− 1, j) for n ≥ 1 and a departure of a blocked customers results in
the state transition from (n, x, j) to (n− 1, x, j) for 0 ≤ x < n.
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For each (n, x), (n− 1, x′) ∈ Vi, denote by C(n)
i [x, x′] the block matrix component of size

(h + 1) × (xi−1(n − 1, x′) + 1) whose (j, j′)-entry corresponds to the transition rate from
(n, x, j) ∈ Si(n) and (n − 1, x′, j′) ∈ Si(n − 1). It can be easily seen that C(n)

i [x, x′] = 0
except for x′ = x with x < n and x′ = n− 1 with x = n.

For given Vi(t) = (n, x), let

h′ =

{
xi−1(n− 1, x), x < n,
xi−1(n− 1, n− 1), x = n.

It can be easily seen that h ≤ h′. Let Cui−1(n, x) be the (h + 1) × (h′ + 1) matrix whose
(j, j′)-component is the transition probability of Xi−1(t) from j to j′ given that a departure
from Wi is occurred on Ψi(t) = (n, x, j). Then it can be easily seen that[

Cui−1(n, x)
]
jj′

= 1(j′ = j), 0 ≤ j ≤ h, 0 ≤ j′ ≤ h′

and for li(n) ≤ x ≤ ui(n), li(n− 1) ≤ x′ ≤ ui(n− 1),

C(n)[x, x′] =

 Cui−1(n, x)δi(x, n− x)1(x′ = x), x < n,
Cui−1(n, n)δi(n, 0)1(x′ = n− 1), x = n,
0, otherwise.

4.2. The subsystem Li with bi = 0. The subsystem Li, 2 ≤ i ≤ N − 1. For describing the
subsystem Li with bi = 0, define the stochastic processes Ψ0

i (t) = (Xi(t),Mi(t), Xi−1(t)).
The state space S0i of ΨΨΨ0

i = {Ψ0
i (t), t ≥ 0} is S0i = ∪κin=0S0i (n), 2 ≤ i ≤ N − 1, where

S0i (n) = {(n, 0, j), (n, 0∗, j) : 0 ≤ j ≤ xi−1(n, n)}

and the number of states in S0i (n) is

s0i (n) = 2(xi−1(n, n) + 1), 2 ≤ i ≤ N − 1

and y∗i−1(n, n) becomes

y∗i−1(n, n) =

 max(0, n− ci), bi−1 > 0,
0, n < ci, bi−1 = 0,
0∗, n = ci, bi−1 = 0.

The generator of ΨΨΨ0
i is the same form as (4.1) with

A
(n)
i = I2 ⊗Aui−1(n), 0 ≤ n ≤ κi − 1,

B
(n)
i =

( (n, 0) (n, 0∗)

(n, 0) B
(n)
i [0] 0

(n, 0∗) αi(n)Ih+1 B
(n)
i [0]

)
, 0 ≤ n ≤ κi,

C
(n)
i =

( (n− 1, 0) (n− 1, 0∗)

(n, 0) Cui−1(n, n)δ0i (n) Cui−1(n, n)β0i (n)
(n, 0∗) 0 0

)
, 1 ≤ n ≤ κi,



10 SHIN, KIM, AND MOON

where In is the identity matrix of size n, h = xi−1(n, n), h′ = xi−1(n+1, n+1), andAui−1(n)
is the (h+ 1)× (h′ + 1) matrix whose (j, j′)-component is, for 0 ≤ j ≤ h, 0 ≤ j′ ≤ h′,[

Aui−1(n)
]
jj′

= µi−1(j, y
∗
i−1(n, n))1(j′ = j − 1)

and B(n)
i [0] is the square matrices of size h+ 1 whose (j, j′)-component is, for 0 ≤ j, j′ ≤ h,[

B
(n)
i [0]

]
jj′

= λi−1(j, y
∗
i−1(n, n))1(j′ = j + 1).

The subsystem LN . Since MN is never blocked, YN (t) = 0 and hence ZN (t) = XN (t),
VN (t) = (XN (t), XN (t)), WN (t) = (XN (t), 0) and κN = ξN . In the later, denote the ZN (t),
VN (t) and WN (t) by XN (t). Thus ΨN (t) = (XN (t), XN−1(t)) and the state space of ΨΨΨN is

SN (n) = {(n, j) : 0 ≤ j ≤ xN−1(n, n)}.

The number of states in SN (n) is sN (n) = xN−1(n, n) + 1, 0 ≤ n ≤ κN . The (j, j′)

component of the matrices A(n)
N , B(n)

N and C(n)
N are as follows:[

A
(n)
N

]
jj′

= µN−1(j, y
∗
N−1(n, n))1(j′ = j − 1),[

B
(n)
N

]
jj′

= λN−1(j, y
∗
N−1(n, n))1(j′ = j + 1),[

C
(n)
N

]
jj′

= µN (n, 0)1(j′ = j).

5. APPROXIMATION OF THE PARAMETERS AND PERFORMANCE MEASURES

Now we assume that the system is in stationary state and let

πi(n, x, j) = lim
t→∞

P (Ψi(t) = (n, x, j)),

and πππi = (πππi(n), n = 0, 1, · · · , κi) with πππi(n) = (πi(n, x, j), (n, x, j) ∈ Si(n)). The limiting
distribution πi(n, s, j), s = 0, 0∗ of Ψ0

i (t) and πππi are defined similarly.
Performance measures. Once the stationary distribution πππi of ΨΨΨi is obtained, the perfor-

mance measures can be obtained as follows:

• Throughput :

Θ =

(
κN∑
n=1

πππN (n)e

)
µN (n, 0)

• Mean number of customers in Wi :

E[Wi] =

κi∑
n=1

ui(n)∑
x=li(n)

xi−1(n,x)∑
j=0

min(n, ci)πππi(n, x, j)
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• Mean number of active customers in Wi :

E[W a
i ] =

κi∑
n=1

ui(n)∑
x=li(n)

xi−1(n,x)∑
j=0

min(x, ai)πππi(n, x, j)

• Mean number of blocked customers in Wi :

E[W b
i ] =

κi∑
n=1

ui(n)∑
x=li(n)

xi−1(n,x)∑
j=0

min(n− x, bi)πππi(n, x, j).

Approximation of λi(x, y). The marginal distribution pdi (x, y) = P (Wi(t) = (x, y)) is

pdi (x, y) =

xi−1(x+y,x)∑
j=0

πi(x+ y, y, j), (x, y) ∈ Wi,

where πi(x + 0∗, 0∗, j) = πi(x, 0
∗, j) for y = 0∗ in the node with bi = 0. Then λi(x, y) is

approximated by the formula, for (x, y) ∈ Wi

λi(x, y) =
h∑
j=1

P (Xi−1(t) = j|Wi(t) = (x, y))µi−1(j, k)

=
1

pdi (x, y)

h∑
j=1

πi(x, y, j)µi−1(j, k),

where h = xi−1(x+ y, x) and k = y∗i−1(x+ y, x).
Approximation of βi−1(x, y), δi−1(x, y) for bi−1 > 0. We consider two cases of bi > 0 and

bi = 0 separately.
Case (i) bi > 0. The marginal distribution pui−1(j, k) = P (W u

i−1(t) = (j, k)) is given by,
0 ≤ j ≤ x∗i−1(k)

pui−1(j, 0) =
∑

(n,x)∈Bi−1(0)∪Di−1

πi(n, x, j) =

ci∑
n=0

min(n,ai)∑
x=li(n)

πi(n, x, j),

pui−1(j, k) =
∑

(n,x)∈Bi−1(k)

πi(n, x, j)

=

ai+k∑
x=li(ci+k)

πi(ci + k, x, j) +

ci+k−1∑
n=ai+k

πi(n, ai + k, j), 1 ≤ k ≤ bi−1.
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Thus for 1 ≤ j ≤ ξi−1,

βi−1(j, 0) = P ({Vi(t) ∈ Bi−1(0)|Wi−1(t) = (j, 0))µi−1(j, 0)

=
1

pui−1(j, 0)

 ai∑
x=li(ci)

πi(ci, x, j) +

ci−1∑
n=ai

πi(n, ai, j)

µi−1(j, 0),

δi−1(j, 0) = µi−1(j, 0)− βi−1(j, 0)

and for 0 ≤ j ≤ x∗i−1(k), 1 ≤ k ≤ bi−1,

βi−1(j, k) = µi−1(j, k), 0 ≤ j ≤ x∗i−1(k), 1 ≤ k ≤ bi−1,

δi−1(j, k) =
∑

(n,x)∈B̃i−1(k)

P (Vi(t) = (n, x)|W u
i−1(t) = (j, k))δi(x, n− x)

=
1

pui−1(j, k)

∑
(n,x)∈B̃i−1(k)

πi(n, x, j)δi(x, n− x)

with δN (x, 0) = µN (x, 0) and δN (x, y) = 0, y ≥ 1.
Case (ii) bi = 0. In case of bi = 0 and bi−1 > 0, the marginal distribution pui−1(j, k) =

P (W u
i−1(t) = (j, k)) is given by

pui−1(j, 0) =

ci∑
n=0

(πi(n, 0, j) + πi(n, 0
∗, j)),

pui−1(j, k) = πi(ci + k, 0, j) + πi(ci + k, 0∗, j), 1 ≤ k ≤ bi−1.

The βi−1(j, k) and δi−1(j, k) are approximated as follows:

βi−1(j, k) = µi−1(j, k), 1 ≤ j ≤ x∗i−1(k), 1 ≤ k ≤ bi−1 − 1,

βi−1(j, 0) = P (Xi(t) = ci|W u
i−1(t) = (j, 0))µi−1(j, 0)

=
πi(ci, 0, j) + πi(ci, 0

∗, j)

pui−1(j, 0)
µi−1(j, 0), 1 ≤ j ≤ ξi−1,

δi−1(j, 0) = µi−1(j, 0)− βi−1(j, 0), 1 ≤ j ≤ ξi−1,
δi−1(j, k) = P (Wi(t) = (ci + k, 0)|W u

i−1(t) = (j, k))µi(ci + k, 0)

=
πi(ci + k, 0, j)

pui−1(j, k)
µi(ci + k, 0), 0 ≤ j ≤ x∗i−1(k), 1 ≤ k ≤ bi−1.

Approximation of αi−1(j), β0i−1(j) and δ0i−1(j) for bi−1 = 0.
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Case (i) bi > 0. In case of bi−1 = 0 and bi > 0, the marginal distribution pui−1(j, y) =
P (W u

i−1(t) = (j, y)) is given by

pui−1(j, 0
∗) =

ai∑
x=li(ci)

πi(ci, x, j) +

ci−1∑
n=ai

πi(n, ai, j),

pui−1(j, 0) =

ci−1∑
n=0

min(n,ai−1)∑
x=li(n)

πi(n, x, j).

The formulae for approximation of αi−1(j), 0 ≤ j ≤ ξi−1 and β0i−1(j), δ0i−1(j), 1 ≤ j ≤ ξi−1
are given as follows:

αi−1(j) = P (Vi(t) = (ai, ai)|W u
i−1(t) = (j, 0∗))δi(ai, 0)

+

ai−1∑
x=li(ci)

P (Vi(t) = (ci, x)|Wi(t) = (j, 0∗))δi(x, ci − x)

=
1

pui−1(j, 0
∗)

πi(ai, ai, j)δi(ai, 0) +

ai−1∑
x=li(ci)

πi(ci, x, j)δi(x, ci − x)

 ,

β0i−1(j) =
1

pui−1(j, 0)

 ai−1∑
x=li(ci−1)

πi(ci − 1, x, j) +

ci−2∑
n=ai−1

πi(n, ai − 1, j)

µi−1(j, 0),

δ0i−1(j) = µi−1(j, 0)− β0i−1(j).

Case (ii) bi = 0. In case of bi = 0 and bi−1 = 0, the marginal distribution of W u
i−1(t) is

pui−1(j, 0
∗) = πi(ci, 0, j) + πi(ci, 0

∗, j),

pui−1(j, 0) =

ci−1∑
n=0

(πi(n, 0, j) + πi(n, 0
∗, j)).

The formulae for approximation of αi−1(j), β0i−1(j) and δ0i−1(j) are given as follows:

αi−1(j) =
πi(ci, 0, j)

pui−1(j, 0
∗)
µi(ci, 0), 0 ≤ j ≤ ξi−1,

β0i−1(j) =
πi(ci − 1, 0, j) + πi(ci − 1, 0∗, j)

pui−1(j, 0)
µi−1(j, 0),

δ0i−1(j) = µi−1(j, 0)− β0i−1(j), 1 ≤ j ≤ ξi−1.

6. ALGORITHM

The parameters for the components ofQi are calculated by the following iterative algorithm.
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0. Initial setting.:
(1) Initial assumption: Initially assuming that there are sufficient number of active

customers in Wi−2, and the customers arrive to the upstream station W u
i−1 in the sub-

system Li according to Poisson process with rate λi−1(j, k) = µi−2(M,y), where M
is a sufficiently large number, for example, M ≥ max1≤i≤N ξi and y = y∗i−2(j+k, j).
For example, if Wi−2 has mi−2 identical servers in parallel whose service time is ex-
ponential with rate µi−2, then

λi−1(j, k) = (mi−2 −mb
i−2(y))µi−2, 3 ≤ i ≤ N,

where y = yi−2(j + k, j)) and

mb
i(y) =

{
max(y − b∗i , 0), y < bi or y = 0 with bi = 0,
mi, y = bi > 0 or y = 0∗.

Note that λ1(j, k) is determined by the assumption of arrival process.
(2) Construct the matrices A(n)

i , 2 ≤ i ≤ N . Note that the matrices A(n)
i do not

contain any unknown parameters and they are not necessary to be updated in iteration
step.

(3) CalculateπππN ofQN and throughput Θ(0), and calculate βN−1(x, y) and δN−1(x, y)
for bN−1 > 0 and αN−1(x), β0N−1(x) and δ0N−1(x) for bN−1 = 0. Note that the ma-

trices C(n)
N are not necessary to be updated in the iteration step.

1. Backward step.: For i = N − 1, N − 2, · · · , 2,
(1) update the matrices B(n)

i and C
(n)
i using βi(x, y) and δi(x, y) for bi−1 > 0

(αi(x), β0i (x) and δ0i (x) for bi−1 = 0) calculated in the previous step and calculate πππi
of Qi, and

(2) if i ≥ 3, then update βi−1(x, y) and δi−1(x, y) for bi−1 > 0 and αi−1(x),
β0i−1(x) and δ0i−1(x) for bi−1 = 0 using the formulae in Section 5.

(3) If i = 2, then update λ2(x, y) using the stationary distribution πππ2 of Q2, and go
to the forward step.

2. Forward step.: For i = 3, · · · , N − 1,
(1) update the matrices B(n)

i using λi−1(x, y) calculated in the previous step and
calculate πππi of Qi, and

(2) update λi(x, y) using the formulae in Section 5.
3. Tolerance check.: In the last subsystem LN , calculate the throughput and check the

stopping criterion as follows:
(1) Update B(n)

N and πππN of QN .
(2) Calculate throughput Θ(m).
(3) Check the tolerance (stopping criterion)

TOL = |Θ(m) −Θ(m−1)| < ε, (6.1)

where Θ(m) is the throughput obtained in the mth iteration and ε > 0 is the predeter-
mined tolerance. If the stopping criterion is satisfied, then stop the iteration, otherwise
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update βN−1(x, y) and δN−1(x, y) for bN−1 > 0 (αN−1(x), β0N−1(x) and δ0N−1(x) for
bN−1 = 0), and repeat the backward and forward iterations until the stopping criterion
is satisfied.

Remark. One can start the iteration with initial guess of the departure rates under the
assumption that W d

i in Li is never blocked. In this case, the iteration step is performed by the
procedure that the arrival rates are updated in forward step, and then departure rates are updated
in backward step in the first iteration, and repeat this procedure until the stopping criterion is
satisfied.

Complexity of algorithm. The stationary distribution πππi of Qi can be calculated using well-
known matrix geometric method (e.g. Shin [14]). Within the iterative algorithm, solving a
subsystem is time consuming. To solve subsystem Li using the algorithm, we must invertKi =
κi + 1 matrices with the maximum size s∗i = max0≤n≤Ki si(n). Therefore the complexity of
one iteration becomes O(

∑N
i=1Ki(s

∗
i )

3).
The number of iterations required is difficult to predict because it depends on the tolerance

ε and the length of the line and system parameters. For example, as shown from numerical
experiments in Section 8, the number of iterations increases with the line length. Although the
convergence of the iteration scheme is not proven analytically, extensive numerical experiments
indicate the convergence of the iteration.

7. TANDEM QUEUES WITH MULTIPLE SERVERS UNDER GENERAL BLOCKING SCHEME

We apply the method to the system with multiple exponential servers and several blocking
scheme.

Consider a tandem queue in which the nodeWi consists of service stationMi and a bufferGi
of capacity gi as depicted in Fig.1. The service station Mi has mi identical servers in parallel
and the service time of each server at Mi is of exponential with rate µi. The capacity of the
node Wi is ci = gi + mi. Let a∗i be the size of buffer space in Gi for active customers and
let b∗i (≤ bi) be the size of buffer space in Gi for blocked customers. The node Wi can contain
ai = a∗i +mi active customers. Note that 0 ≤ a∗i ≤ gi, 0 ≤ b∗i ≤ gi and a∗i + b∗i ≥ gi and the
maximal number of blocked servers is b∗∗i = bi − b∗i (≤ mi). Assuming that the last node MN

is never blocked, bN = 0 and aN = cN .
The source node W0 behaves like a system with m0 servers and a virtual buffer of size b0

for blocked customers to enter the first node W1. We assume that W0 is never starved and each
server in W0 starts service immediately after a service completion unless the server is blocked.
The service time of each server is exponential with rate µ0. The arrival rate to W1 is

λ1(x, y) = (m0 − yb0(x, y))µ0,

where yb0(x, y) is the number of blocked servers inW0. IfW0 is a BBS node, then the customers
arrive according to an ordinary Poisson process with constant ratem0µ0 and blocked customers
are lost, that is,

λ1(x, y) =

{
m0µ0, x < a1, x+ y < c1,
0, otherwise.
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FIGURE 1. Tandem queueing network with general blocking

FIGURE 2. Blocking mechanism for bi > 0

Case (i) BAS node (bi > 0). In this case, the blocked customer is stocked at the buffer Gi if
there ia a place available for blocked customers, otherwise it is stayed at the server just service
completed and the server is blocked (Figure 2).

The server blocked at Mi is forced to stop its service until there is a place available for
active customers at Wi+1. If the number of blocked customers at Wi reaches bi upon a service
completion, then all the servers at Mi are blocked and forced to stop their service. We coin this
type of blocking rule the generalized blocking after service (GBAS) rule. This blocking scheme
contains many BAS blocking schemes as a special cases:

(1) The blocking scheme with bi = b∗i +mi is an ordinary GB scheme in the system with
multiple servers.

(2) If b∗i = 0 and bi = mi, then the blocking mechanism is the ordinary BAS rule in [12].
(3) If bi = b∗i > 0, then the blocked customers are stocked only at the buffer. All the

servers are blocked upon the blocking level reaches bi, however, the idle server can
accept an active customer even it is stopped its service. The blocking state of all the
servers changes to working states if the level of blocked customers downs to the below
of bi.
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(4) When 0 < b∗∗i < mi, then all the servers atMi are forced to stop their service upon the
number of the blocked customers at Mi reaches bi, however the idle server can accept
an active customer even it is stopped its service. The servers that are not blocked start
new service whose length is exponential distributed random variable with rate µi upon
the level of blocked customers becomes less than bi.

Given Wi(t) = (x, y), the number of blocked servers mb
i(y) at Mi is

mb
i(y) =

{
max(y − b∗i , 0), y < bi,
mi, y = bi

and hence the service rate from Mi is given by

µi(x, y) = min(x,mi −mb
i(y))µi.

Case (ii) BBS node (bi = 0). In this case, the service rate of Mi depends on the number x
of AC and the server state s of Mi(t) and is given by

µi(x, s) =

{
min(x,mi)µi, s = 0,
0, s = 0∗.

8. NUMERICAL RESULTS

To investigate the accuracy of the method proposed in this paper, the method is applied to the
tandem queue with multiple servers and the results are compared with simulations. The simu-
lation models for the systems in the tables were developed using ARENA [15]. The simulation
run time was set to 100,000 unit times, including a warm-up time of 10,000 unit times. Ten
replications were conducted for each case and the half length of the 95% confidence interval
(c.i.) was obtained. A tolerance ε = 10−5 is used for stopping criterion in (6.1). To validate
the simulation program, the simulation are compared with the exact one for throughput of the
system with N = 2 in Table 1. The table shows that simulation can be used as an alternative
of exact analysis.

The current approximation for the ordinary BAS system with N = 5, N = 11 and b∗i = 0,
bi = mi is compared with the method (SM) of Shin and Moon [12] in Tables 2. The simulation

TABLE 1. Comparison of simulation with exact results for throughput of the
system with N = 2.

mi gi (b∗0, b
∗
1, b

∗
2) (b0, b1, b2) Exact Sim (c.i.)

1 3 (0,0,0) (0,0,0) 0.7359 0.7357 (±0.0017)
(0,0,0) (0,1,1) 0.7543 0.7542 (±0.0012)
(0,2,2) (0,3,3) 0.7677 0.7675 (±0.0014)
(3,2,2) (3,3,3) 0.8266 0.8257 (±0.0012)

3 3 (0,0,0) (0,0,0) 0.7744 0.7798 (±0.0011)
(0,0,0) (0,3,3) 0.7966 0.8009 (±0.0008)
(0,0,0) (3,3,3) 0.8360 0.8363 (±0.0009)
(3,3,3) (3,5,5) 0.8495 0.8520 (±0.0009)
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results (Sim) and the numerical results for SM in Tables 3 are from [12]. The measure of
the deviation of approximation (App) from the simulation (Sim) is calculated by the formula
D(%) = ((App− Sim)/Sim) × 100. Table 3 shows that the accuracy of current method is
similar to that of SM.

We consider a tandem queue that consists ofN nodes and each node has multiple servers and
follows a general blocking scheme. Customers arrive from outside (W0) according to a Poisson
process and the blocked customers entering into the node W1 are lost, that is, m0 = 1, b0 = 0,
and µ0 = 1.0. We assume that ai = mi + gi and a∗i = gi. In the following, the N -dimensional
vectorsmmm = (m1, · · · ,mN ) and ggg = (g1, · · · , gN ) mean the number of servers and the buffer
size in the system, respectively. For example, the vector mmm = (1, 3, 2, 4) means that m1 = 1,
m2 = 3, m3 = 2, m4 = 4. Similarly, denote the upper limits of customers in buffer and in
the system by the N -dimensional vectors bbb∗ = (b∗1, · · · , b∗N−1, 0) and bbb = (b1, · · · , bN−1, 0),
respectively. If the number mi of servers at node Wi, i = 1, 2, · · · , N are the same as a
constant k, we write mi = k instead of using vector mmm. Similarly, if gi, 1 ≤ i ≤ N are the
same as a constant j, then we write j in stead of vector ggg.

TABLE 2. Throughput for the system of length N = 5 with gi = 3

mmm (3, 3, 3, 3, 3) (3, 1, 3, 1, 3)
µi

1
mi

1.0

b∗i bi Sim App (D(%)) Sim App (D(%))
0 0 0.727 0.716 (-1.6) 0.862 0.857 (-0.6)
mi mi 0.764 0.762 (-0.2) 0.869 0.870 (0.1)
3 3 0.764 0.771 (0.9) 0.877 0.877 (0.0)
2 3 0.777 0.774 (-0.4) 0.877 0.877 (-0.1)
mi ci 0.786 0.782 (-0.4) 0.879 0.878 (-0.1)

TABLE 3. Throughput for tandem queues under ordinary BAS blocking

N mi µi gi Sim(CI) SM (D(%)) App (D(%))
5 3 1

mi
0 0.643 (±0.002) 0.634 (-1.3) 0.637 (-0.8)
3 0.776 (±0.003) 0.777 ( 0.1) 0.775 ( 0.0)
5 0.819 (±0.004) 0.820 ( 0.1) 0.819 ( 0.0)

1.0 0 1.930 (±0.003) 1.903 (-1.4) 1.912 (-0.9)
3 2.330 (±0.004) 2.330 ( 0.0) 2.326 (-0.2)
5 2.461 (±0.005) 2.461 ( 0.0) 2.458 (-0.1)

11 m2i = 4, 1
mi

0 0.557 (±0.002) 0.545 (-1.7) 0.543 (-2.6)
m2i+1 = 1, 3 0.734 (±0.001) 0.737 ( 0.4) 0.730 (-0.4)
i = 0, 1, · · · , 5 5 0.788 (±0.003) 0.790 ( 0.2) 0.786 (-0.3)

1.0 0 0.726 (±0.003) 0.725 (-0.2) 0.721 (-0.7)
3 0.853 (±0.002) 0.863 ( 1.2) 0.854 (-0.1)
5 0.888 (±0.002) 0.894 ( 0.7) 0.889 (-0.1)
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The throughput for the system of length N = 5 with gi = 3 are listed in Table 2. The
throughput and the mean number E[W ] =

∑N
i=1 E[Wi] of customers in the system are pre-

sented in Table 5 for the systems of length N = 10 with parameters in Table 4. The mean
number E[Wi] of customers in node Wi are presented in Table 6. In Table 2, Table 5 and Table
6, the half length of 95% confidence interval of simulation results for throughput and for the
mean number of customers are less than 0.002 and 0.3, respectively, and confidence intervals
are omitted. The table shows that the approximation works well for the throughput and mean
number of customers.

TABLE 4. Scenarios for the system of length N = 10 in Table 5 and Table 6

Cases Type mi gi b∗i bi
1 BBS 1 3 0 0 mmm = (4, 1, 3, 2, 3, 4, 1, 3, 1, 2)
2 BAS 1 3 2 2 ggg = (1, 4, 2, 3, 2, 1, 4, 2, 4, 3)
3 BAS 1 3 2 3 ggg0 = (1, 4, 2, 3, 2, 1, 4, 2, 4, 0)
4 Kanban 1 3 3 4 bbb∗1 = (2, 2, 0, 2, 2, 2, 0, 2, 2, 0)
5 Mixed 1 3 bbb∗1 bbb1 bbb1 = (3, 3, 0, 3, 3, 3, 0, 3, 3, 0)
6 BBS mmm ggg 0 0 bbb∗2 = (1, 3, 2, 3, 0, 0, 4, 2, 3, 0)
7 BAS mmm ggg ggg0 ggg0 bbb2 = (3, 4, 4, 5, 3, 2, 5, 5, 4, 0)
8 Kanban mmm ggg ggg∗0 5 bbb∗3 = (1, 2, 0, 0, 1, 1, 0, 1, 4, 0)
9 Mixed mmm ggg bbb∗2 bbb2 bbb3 = (5, 3, 0, 2, 4, 3, 0, 3, 5, 0)

10 Mixed mmm ggg bbb∗3 bbb3

TABLE 5. Throughput and mean number E[W ] of customers in the system
with N = 10

Throughput E[W ]
Cases µi Sim App (D(%)) Sim App (D(%))

1 1.0 0.641 0.637 (-0.6) 20.1 20.0 (-0.5)
2 1.0 0.714 0.710 (-0.5) 24.2 24.0 (-0.9)
3 1.0 0.730 0.724 (-0.7) 24.9 24.6 (-1.3)
4 1.0 0.737 0.731 (-0.8) 25.1 24.8 (-1.2)
5 1.0 0.703 0.697 (-0.8) 24.1 23.8 (-1.2)
6 1

mi
0.662 0.645 (-2.56) 28.1 27.0 (-3.9)

1.0 0.871 0.881 (1.1) 26.6 25.6 (-3.6)
7 1

mi
0.716 0.710 (-0.8) 30.0 29.9 (-0.3)

1.0 0.890 0.895 (0.6) 26.2 25.6 (-2.4)
8 1

mi
0.730 0.726 (-0.6) 30.8 30.7 (-0.2)

1.0 0.890 0.890 (0.0) 26.0 26.1 (0.2)
9 1

mi
0.721 0.720 (-0.1) 30.6 30.8 (0.5)

1.0 0.890 0.892 (0.2) 25.8 25.6 (-0.6)
10 1

mi
0.704 0.699 (-0.7) 30.7 30.3 (-1.4)

1.0 0.877 0.889 (1.3) 27.7 28.0 (1.1)
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Run time. The current algorithm was performed on a laptop computer at 2.80GHz 16.0
GB RAM using Mathematicar11 [16] for the system with ai = bi = ci, a∗i = b∗i = gi and
µi = 1

mi
. The stopping criterion ε = 10−5 was used. The number of iterations (NI) and run

time (CPU) in seconds are listed in Table 7. The behavior of the run time and the number of
iteration of the algorithm as a function of the buffer size is depicted in Fig. 3. The table and
figure show that the run time of the algorithm increases with the line length, buffer size and the
number of servers at each node, and it depends significantly on the buffer size and the number
of servers. The number of iterations is more sensitive to the lengthN of the line than the buffer
size and the number of servers.

TABLE 6. Mean number E[Wi] of customers at node Wi in the system with
N = 10, µi = 1

mi

Case 1 (BBS) Case 4 (Kanban) Case 9 (Mixed)
Node Sim App (D(%)) Sim App (D(%)) Sim App (D(%))

1 2.68 2.69 (0.2) 2.36 2.36 (0.3) 3.55 3.55 (0.1)
2 2.42 2.43 (0.2) 2.67 2.67 (-0.2) 3.25 3.22 (-1.0)
3 2.28 2.27 (-0.4) 2.74 2.72 (-0.6) 3.91 3.86 (-1.1)
4 2.16 2.15 (-0.5) 2.74 2.71 (-1.2) 3.04 2.85 (-6.3)
5 2.06 2.05 (-0.5) 2.71 2.66 (-1.9) 3.44 3.34 (-2.7)
6 1.96 1.95 (-0.7) 2.66 2.60 (-2.2) 3.72 3.64 (-2.1)
7 1.86 1.84 (-0.9) 2.58 2.53 (-2.1) 2.87 2.90 (1.3)
8 1.75 1.73 (-1.2) 2.46 2.42 (-1.8) 2.71 2.69 (-0.8)
9 1.59 1.57 (-1.1) 2.27 2.25 (-1.3) 2.03 2.02 (-0.1)

10 1.32 1.31 (-1.1) 1.92 1.90 (-1.3) 2.23 2.22 (-0.5)
Total 20.09 19.99 (-0.5) 25.12 24.81(-1.2) 30.74 30.30 (-1.4)

TABLE 7. CPU time for Kanban system in seconds (µi = 1.0/mi)

mi = 1 mi = 3 mi = 5
N gi NI CPU NI CPU NI CPU
10 1 8 0.2 7 1.4 7 4.8

3 7 1.4 7 4.9 7 13.7
5 7 4.9 7 13.8 7 32.0
7 7 13.6 7 31.8 7 69.5

20 1 15 1.0 14 6.1 14 22.9
3 13 5.6 13 20.5 13 60.6
5 12 19.6 12 56.1 12 133.2
7 12 55.8 12 131.4 12 284.4
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FIGURE 3. Run time and the number of iterations of algorithm for kanban
system with mi = 3 and µi = 1

mi

9. CONCLUDING REMARKS

An approximation method for tandem queues with finite buffers and exponential service
times with state dependent service rates under general blocking scheme was presented. The
model considered in this paper is very general and it contains the system with multi-server node
and many classical blocking scheme such as ordinary manufacturing blocking, communication
blocking, and kanban blocking as special cases. Extensive numerical experiments show that
the current method is very effective in the sense of accuracy of approximation and computation
time even for the system that consists of nodes with different blocking schemes.
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