DOI QR코드

DOI QR Code

Comparison of DBR with CONWIP in a Production Line with Constant Processing Times

상수 공정 시간을 갖는 라인 생산 시스템에서 DBR과 CONWIP의 성능 비교 분석

  • 이호창 (경희대학교 경영대학 경영학부) ;
  • 서동원 (경희대학교 경영대학 경영학부)
  • Received : 2012.10.12
  • Accepted : 2012.12.11
  • Published : 2012.12.31

Abstract

We compared a DBR(drum-buffer-rope) system with a CONWIP(constant work-in-process) system in a production line with constant processing times. Based on the observation that a WIP-controlled line production system such as DBR and CONWIP is equivalent to a m-node tandem queue with finite buffer, we applied a max-plus algebra based solution method for the tandem queue to evaluate the performance of two systems. Numerical examples with 6 workstations were also used to demonstrate the proposed analysis. The mathematical analyses support that CONWIP outperforms DBR in terms of expected waiting time and WIP. Unlike the CONWIP case, sequencing workstations in a DBR affects the performance of the system. Delaying a bottleneck station in a DBR reduces expected waiting time.

이 연구는 상수 공정 시간을 갖는 라인생산시스템에서 CONWIP과 DBR이 각각 max-plus 선형시스템의 특수형태임을 밝히고 max-plus 대수에 기반한 안정대기시간 연구결과를 이용하여 CONWIP와 DBR의 성능을 비교 분석하였다. CONWIP의 경우, 생산시스템 내의 체류시간은 DBR의 경우보다 항상 짧다는 사실이 수학적으로 규명되었고 예제를 통해 계산, 비교되었다. 한편 두 경우에서 모두, 애로공정이후 노드에서의 대기시간은 유한버퍼의 크기와 공정의 순서에 무관함을 확인하였다. CONWIP에서는 시스템 내 평균 대기시간 또는 체류시간이 공정의 순서에 무관하지만, DBR에서는 애로공정이 뒤로 갈수록 감소함을 확인하였다.

Keywords

References

  1. Ayhan, H. and Seo, D.-W., "Laplace transform and moments of waiting times in Poisson driven (Max,+) linear systems", QUESTA, Vol. 37, No. 4, pp. 405-438, 2001.
  2. Ayhan, H. and Seo, D.-W., "Tail probability of transient and stationary waiting times in (Max,+) linear systems", IEEE Transaction on Automatic Control, Vol. 47, No. 1, pp. 151-157, 2002. https://doi.org/10.1109/9.981736
  3. Baccelli, F., Cohen, G., Olsder, G. J. and Quadrat, J-P, Synchronization and Linearity: An Algebra for Discrete Event Systems, John Wiley and Sons, 1992.
  4. Baccelli, F. and Schmidt, V., "Taylor series expansions for Poisson driven (Max,+) linear systems", Annals of Applied Probability, Vol. 6, No. 1, pp. 138-185, 1996. https://doi.org/10.1214/aoap/1034968069
  5. Baccelli, F., Hasenfuss, S. and Schmidt, V., "Transient and stationary waiting times in (max,+) linear systems with Poisson input", QUESTA, Vol. 26, pp. 301-342, 1997.
  6. Baccelli, F., Hasenfuss, S. and Schmidt, V., "Expansions for steady state characteristics in (Max,+) linear systems", Stochastic Models, Vol. 14, pp. 1-24, 1998. https://doi.org/10.1080/15326349808807458
  7. Bonvik, A. M., Dallery, Y. and Gershwin, S. B., "Approximate analysis of production system operated by a CONWIP/ finite buffer hybrid control policy", IJPR, Vol. 38, No. 13, pp. 2845-2869, 2000. https://doi.org/10.1080/00207540050117332
  8. Chang, T. M. and Yih, Y., "Generic Kanban systems for dynamic environments", IJPR, Vol. 32, No. 4, pp. 889-902, 1994. https://doi.org/10.1080/00207549408956977
  9. Cook, D. P., "Simulation comparison of traditional, JIT, and TOC manufacturing systems in a flow shop with bottlenecks", Production and Inventory Management Journal, Vol. 35, pp. 73-78, 1994.
  10. Duenyas, I., Hopp, W. J. and Spearman, M. L., "Characterizing the output process of a CONWIP line with deterministic processing and random outages", Management Sciences, Vol. 39, No. 8, pp. 975-988, 1993. https://doi.org/10.1287/mnsc.39.8.975
  11. Gilland, W., "A simulation study comparing performance of CONWIP and bottleneck-based release rules", Production Planning, Vol. 13, No. 2, pp. 211-219, 2002. https://doi.org/10.1080/09537280110069784
  12. Goldratt, E. M. and Cox, J., The Goal, Croton-on-Hudson, NY, North River Press, Inc., 1984.
  13. Goldratt, E. M. and Fox, R. E., The Race, Croton-on-Hudson, NY, North River Press, Inc., 1986.
  14. Gstettner, S. and Kuhn, H., "Analysis of production control systems Kanban and CONWIP", IJPR, Vol. 34, No. 11, pp. 3253-3273, 1996. https://doi.org/10.1080/00207549608905087
  15. Heidergott, B., Max-plus linear stochastic systems and perturbation analysis, Springer, 2006.
  16. Jodlbauer, H. and Huber, A., "Service level performance of MRP, Kanban, CONWIP and DBR due to parameter stability and environmental robustness", IJPR, Vol. 46, No. 8, pp. 2179-2195, 2008. https://doi.org/10.1080/00207540600609297
  17. Koh, S. G. and Bulfin, R. L., "Comparison of DBR with CONWIP in an Unbalanced Production Line with Three Stations", IJPR, Vol. 42, No. 2, pp. 391-404, 2004. https://doi.org/10.1080/00207540310001612026aa
  18. Lee, H. and Seo, D.-W., "Performance evaluation of Kanban-controlled line production systems with constant processing times", Productivity Review, Vol. 24, No. 4, pp. 183-205, 2010.
  19. Lee, H. and Seo, D.-W., "Comparison of CONWIP with Kanban in a production line with constant processing times", J. Korean Operations Research and Management Science Society, Vol. 36, No. 2, pp. 51-65, 2011.
  20. Louw, L. and Page, D. C., "Queuing network analysis approach for estimating the sizes of the time buffers in Theory of Constraints-controlled production systems", IJPR, Vol. 42, No. 6, pp. 1207-1226, 2004. https://doi.org/10.1080/2007540310001631593
  21. Muckstadt, J. A. and Tayur, S. R., "A comparison of alternative Kanban control mechanism: I. background and structural results", IIE Transaction, Vol. 27, pp. 140-150, 1995. https://doi.org/10.1080/07408179508936726
  22. Muckstadt, J. A. and Tayur, S. R., "A comparison of alternative Kanban control mechanism: II. experimental results", IIE Transaction, Vol. 27, pp. 151-161, 1995. https://doi.org/10.1080/07408179508936727
  23. Radovilsky, Z. D., "A quantitative approach to estimate the size of the time buffer in the theory of constraints", IJPE, Vol. 55, pp. 113-119, 1998.
  24. Roderick, L. M., Toland, J. and Rodriguez, F. P., "A simulation study of CONWIP versus MRP at Westinghouse", Computers and Industrial Engineering, Vol. 26, pp. 237-242, 1994. https://doi.org/10.1016/0360-8352(94)90058-2
  25. Schragenheim, E. and Ronen, B., "Drum-buffer-rope shop floor control", Production Inventory Management Journal, Vol. 31, No. 3, pp. 18-22, 1990.
  26. Spearman, M. L., Woodruff, D. L. and Hopp, W. J., "CONWIP: a pull alternative to Kanban", IJPR, Vol. 28, No. 5, pp. 879-894, 1990. https://doi.org/10.1080/00207549008942761
  27. Spearman, M. L. and Zazanis, M. A., "Push and pull production systems: issues and comparisons", Operations Research, Vol. 40, No. 3, pp. 521-532, 1992. https://doi.org/10.1287/opre.40.3.521
  28. Spencer, M. S. and Cox, J. F., "Master production scheduling development in a theory of constraints environment", Production and Inventory Management Journal, Vol. 36, No. 1, pp. 80-94, 1995.
  29. Ye, T. and Han, W., "Determination of buffer sizes for drum-buffer-rope controlled production system", IJPR, Vol. 46, No. 10, pp. 2827-2844, 2008. https://doi.org/10.1080/00207540600922948

Cited by

  1. A simulation study on S-Button factory production system vol.23, pp.4, 2014, https://doi.org/10.9709/JKSS.2014.23.4.229
  2. Closed-form formulae for moment, tail probability, and blocking probability of waiting time in a buffer-sharing deterministic system vol.45, pp.5, 2017, https://doi.org/10.1016/j.orl.2017.06.004
  3. Production Control in Multiple Bottleneck Processes using Genetic Algorithm vol.41, pp.1, 2018, https://doi.org/10.11627/jkise.2018.41.1.102