• Title/Summary/Keyword: system uncertainty

Search Result 2,446, Processing Time 0.029 seconds

A Design of Speed Control Systems for the Governor in Power Station using QFT and Genetic Algorithm (QFT와 유전 알고리즘을 이용한 발전소 조속기 속도제어계의 설계)

  • 김주식;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.77-84
    • /
    • 1998
  • Speed control systems of the governor in power station used in this study is organized by the regulator (PID controller), actuator and turbine. Considering parameter uncertainties and disturbances in this system, the performance may not be achieved by the PID control. Therefore, a design technique is necessary that accomplish the desired system performance tolerance in despite of plant uncertainty i\I1d disturbances. In this study, we used QFT(Quantitative Feedback Theory) to provide stable operation in power plant and presented the genetic algorithm for loop shaping approximation technique of QFT. And we designed speed control systems for the governor using the above approach.proach.

  • PDF

Numerical Verification of the First Four Statistical Moments Estimated by a Function Approximation Moment Method (함수 근사 모멘트 방법에서 추정한 1∼4차 통계적 모멘트의 수치적 검증)

  • Kwak, Byung-Man;Huh, Jae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.490-495
    • /
    • 2007
  • This research aims to examine accuracy and efficiency of the first four moments corresponding to mean, standard deviation, skewness, and kurtosis, which are estimated by a function approximation moment method (FAMM). In FAMM, the moments are estimated from an approximating quadratic function of a system response function. The function approximation is performed on a specially selected experimental region for accuracy, and the number of function evaluations is taken equal to that of the unknown coefficients for efficiency. For this purpose, three error-minimizing conditions are utilized and corresponding canonical experimental regions constructed accordingly. An interpolation function is then obtained using a D-optimal design and then the first four moments of it are obtained as the estimates for the system response function. In order to verify accuracy and efficiency of FAMM, several non-linear examples are considered including a polynomial of order 4, an exponential function, and a rational function. The moments calculated from various coefficients of variation show very good accuracy and efficiency in comparison with those from analytic integration or the Monte Carlo simulation and the experimental design technique proposed by Taguchi and updated by D'Errico and Zaino.

Robust Adaptive Back-stepping Control Using Dual Friction Observer and RNN with Disturbance Observer for Dynamic Friction Model (외란관측기를 갖는 RNN과 이중마찰관측기를 이용한 동적마찰모델에 대한 강인한 적응 백-스테핑제어)

  • Han, Seong-Ik
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-58
    • /
    • 2009
  • For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments. Friction parameters can be also varied according to contact conditions such as the variation of temperature and lubrication. Thus, in order to overcome these problems and obtain the desired position tracking performance, a robust adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator are also developed. The feasibility of the proposed control scheme is verified through the experiment fur a ball-screw system.

Construction of a Low Magnetic Field Standard System Using a Precision Solenoid (정밀솔레노이드를 사용한 저자장 표준시스템 제작)

  • 박포규;손대락;우병칠;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.2
    • /
    • pp.150-155
    • /
    • 1992
  • The low magnetic field standard below 1 mT with resolution of 100 nT has been established for the calibration and testing of low field magnetometers. A precision single layered solenoid, which is made of quartz tube and bare copper wire, was constructed in order to generate a precise magnetic field. To improve the field homogeneity in the solenoid, three-current method was employed. The injected current and injection points on the solenoid were optimized by computer simulation. The magnetic field uncertainty in the solenoid was 0.1 % and 0.01 % in the range of ${\pm}5\;cm$ from the center for a single and three-current methods respectively. We also constructed a testing system for the dynamic properties of low field magnetometers.

  • PDF

Human Reliability Analysis for Risk Assessment of Nuclear Power Plants (원자력발전소 위험도 평가를 위한 인간신뢰도분석)

  • Jung, Won-Dea;Kim, Jae-Whan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.55-64
    • /
    • 2011
  • Objective: The aim of this paper is to introduce the activities and research trends of human reliability analysis including brief summary about contents and methods of the analysis. Background: Various approaches and methods have been suggested and used to assess human reliability in field of risk assessment of nuclear power plants. However, it has noticed that there is high uncertainty in human reliability analysis which results in a major bottleneck for risk-informed activities of nuclear power plants. Method: First and second generation methods of human reliability analysis are reviewed and a few representative methods are discussed from the risk assessment perspective. The strength and weakness of each method is also examined from the viewpoint of reliability analyst as a user. In addition, new research trends in this field are briefly summarized. Results: Human reliability analysis has become an important tool to support not only risk assessment but also system design of a centralized complex system. Conclusion: Human reliability analysis should be improved by active cooperation with researchers in field of human factors. Application: The trends of human reliability analysis explained in this paper will help researchers to find interest topics to which they could contribute.

Robust Transmission Waveform Design for Distributed Multiple-Radar Systems Based on Low Probability of Intercept

  • Shi, Chenguang;Wang, Fei;Sellathurai, Mathini;Zhou, Jianjiang;Zhang, Huan
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.70-80
    • /
    • 2016
  • This paper addresses the problem of robust waveform design for distributed multiple-radar systems (DMRSs) based on low probability of intercept (LPI), where signal-to-interference-plus-noise ratio (SINR) and mutual information (MI) are utilized as the metrics for target detection and information extraction, respectively. Recognizing that a precise characterization of a target spectrum is impossible to capture in practice, we consider that a target spectrum lies in an uncertainty class bounded by known upper and lower bounds. Based on this model, robust waveform design approaches for the DMRS are developed based on LPI-SINR and LPI-MI criteria, where the total transmitting energy is minimized for a given system performance. Numerical results show the effectiveness of the proposed approaches.

Hybrid Adaptive Feedforward Control System Against State and Input Disturbances (시스템 상태 및 입력 외란을 고려한 하이브리드 방식의 적응형 피드포워드 제어시스템)

  • Kim, Jun-Su;Cho, Hyun-Cheol;Kim, Gwan-Hyung;Ha, Hong-Gon;Lee, Hyung-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • AFC (Adaptive Feedforward Control) is significantly employed for improving control performance of dynamic systems particularly involving periodic disturbance signals in engineering fields. This paper presents a novel hybrid AFC approach for discrete-time systems with multiple disturbances in terms of control input and state variables. The proposed AFC mechanism is hierarchically composed of a conventional feedforward control framework and PID auxiliary control configuration in parallel. The former is generic to decrease periodic disturbance excited to control actuators and the latter is additionally constructed to overcome control deterioration due to time-varying uncertainty under given systems. We carry out numerical simulation to test reliability of our proposed hybrid AFC system and compare its control performance to a well-known conventional AFC method with respect to time and frequency domains for proving of its superiority.

Real-Time Implementation of Shunt Active Filter P-Q Control Strategy for Mitigation of Harmonics with Different Fuzzy M.F.s

  • Mikkili, Suresh;Panda, Anup Kumar
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.821-829
    • /
    • 2012
  • This research article presents a novel approach based on an instantaneous active and reactive power component (p-q) theory for generating reference currents for shunt active filter (SHAF). Three-phase reference current waveforms generated by proposed scheme are tracked by the three-phase voltage source converter in a hysteresis band control scheme. The performance of the SHAF using the p-q control strategy has been evaluated under various source conditions. The performance of the proposed control strategy has been evaluated in terms of harmonic mitigation and DC link voltage regulation. In order to maintain DC link voltage constant and to generate the compensating reference currents, we have developed Fuzzy logic controller with different (Trapezoidal, Triangular and Gaussian) fuzzy M.F.s. The proposed SHAF with different fuzzy M.F.s is able to eliminate the uncertainty in the system and SHAF gains outstanding compensation abilities. The detailed simulation results using MATLAB/SIMULINK software are presented to support the feasibility of proposed control strategy. To validate the proposed approach, the system is also implemented on a real time digital simulator and adequate results are reported for its verifications.

Construction of a Distribution Photometer System for Automobile Light Sources (자동차용 광원의 광도분포 측정장치(배광측정기)제작)

  • 김용완;김홍기;이인원;이완순;이상원
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.4
    • /
    • pp.53-61
    • /
    • 1996
  • A distribution photometer was constructed to measure the angular distribution of luminous intensity of light sources and the reflected luminance of retroreflectors. This system incorporates a goniometer to rotate test light source(360 degree in yaw rotation and $\pm$30 degree in pictch rotation), a photomultiplier tube as light detector, light projector for retroreflection measurements, and the control and display unit. The ranges of luminous Intensity measurements and observation angles are 0.01~199900 cd and 0.2~1.5 degree respectively. The uncertainty of luminous intensity measurements is $\pm$3%. This paper describes the construction of the distribution photometer and the performance characteristics.

  • PDF

ARIMA Based Wind Speed Modeling for Wind Farm Reliability Analysis and Cost Estimation

  • Rajeevan, A.K.;Shouri, P.V;Nair, Usha
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.869-877
    • /
    • 2016
  • Necessity has compelled man to improve upon the art of tapping wind energy for power generation; an apt reliever of strain exerted on the non-renewable fossil fuel. The power generation in a Wind Farm (WF) depends on site and wind velocity which varies with time and season which in turn determine wind power modeling. It implies, the development of an accurate wind speed model to predict wind power fluctuations at a particular site is significant. In this paper, Box-Jenkins ARIMA (Auto Regressive Integrated Moving Average) time series model for wind speed is developed for a 99MW wind farm in the southern region of India. Because of the uncertainty in wind power developed, the economic viability and reliability of power generation is significant. Life Cycle Costing (LCC) method is used to determine the economic viability of WF generated power. Reliability models of WF are developed with the help of load curve of the utility grid and Capacity Outage Probability Table (COPT). ARIMA wind speed model is used for developing COPT. The values of annual reliability indices and variations of risk index of the WF with system peak load are calculated. Such reliability models of large WF can be used in generation system planning.