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Robust Adaptive Back-stepping Control Using Dual
Friction Observer and RNN with Disturbance
Observer for Dynamic Friction Model
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[ Abstract }

For precise tracking control of a servo system with nonlinear friction, a robust friction compensation scheme is
presented in this paper. The nonlinear friction is difficult to identify the friction parameters exactly through experiments.
Friction parameters can be also varied according to contact conditions such as the variation of temperature and
lubrication. Thus, in order to overcome these probiems and obtain the desired position tracking performance, a robust
adaptive back-stepping control scheme with a dual friction observer is developed. In addition, to estimate lumped
friction uncertainty due to modeling errors, a DEKF recurrent neural network and adaptive reconstructed error estimator

are also developed. The feasibility of the proposed control scheme is verified through the experiment for a ball-screw
system.

Key Words : LuGre friction model(LuGre m}& = e), Adaptive back-stepping control(Z-5-3 W 28| A|¢]), Dual friction observer
(°]5AHa=7]), Recurrent neural network(4:213 X177), Adaptive reconstructed error estimator(2}-3-% 247
22p5:4)71), Decoupled extended Kalman filter(B}14] E2bziulalE)), Ball-screw systems(E-A35F AJAH)

1. Introduction mechanical systems contacted each other. It affects the
tracking performance of servo systems such as machine
Friction is a phenomenon that almost appears in tools and robots. In the moderate velocity range, in
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general, a classical friction model is used which consists
of the Coulomb and viscous friction The classical friction
model can consider only static characteristics of the
friction force and velocity. The classical friction model,
therefore, fails to capture the low velocity effects such
as the Stribeck effect, stick-slip motion, pre-sliding motion,
and break-away force, which play a significant role in
high precise position tracking applications. Besides these
friction effects, through many researches, it has been
revealed that friction is also influenced by the factors such
as interior temperature of friction surface, contacting time,
magnitude of load, and operating distance.

The dynamic friction, called LuGre friction model(l),
provides the sufficient acceptable property of the dynamic
friction and its simple structures, most researchers has
adopted this model as a standard friction model. However,
the LuGre model has a drawback that cannot exactly
describe the friction dynamics in the pre-sliding range
where the hysteresis phenomena appear”™. In spite of the
inability of the exact description for hysteresis friction of
this models, several researches™” have adopted to control
the friction system as the LuGre model since it almost
satisfy the most part of the nonlinear friction characteristic
and is easier to analyze and implement than other second-
order friction models.

In general, the control methods for the compensation
of nonlinear friction are divided into two types. One is
the friction model-based method and the other is the
non-friction model-based method without friction observer.
The latter approach is mainly used when the exact friction
model cannot be constructed and precise tracking perfor-
mance is not required. In the low precision level, this
approach can be applied conveniently because the pro-
cedure of the friction parameter identification can be
omitted and the structure of the controller is simple. The
neural network control® and sliding mode control® belong
to the non-model based method. The model-based method
can be applied when the identification for friction model
is possible within a certain exact range of precision level.
It can obtain more precise tracking performance but cannot
avoid a little complexity of control system and difficulty
of the exact identification of friction parameters. PID/friction

51

observer-based control method"'*"? and adaptive control
method™ belong to the model-based method. A recurrent
neural networks (RNN)(M’IS) for the approximation of
unknown function have been developed recently by many
people since it provides a dynamic mapping and demon-
strates good control approximation performance compared
with a static neural networks such as feedforward neural
networks which needs a large number of neuron to
represent dynamic response. A RNN using extended
Kalman filter was also developed by several authors ae.1m
since it gives the computational merits and more optimal
learning algorithms than a similar RNN.

In this paper, in order to estimate the friction parameters
and uncertainty friction torque, a robust adaptive back-
stepping scheme using dual friction observer and RNN
with reconstructed error estimator is proposed. In order
to show the feasibility of the proposed control scheme,
some experiments for a ball-screw system with the non-

linear dynamic friction are carried out.

2. LuGre fricton model

The LuGre friction model'” as shown in Fig. 1 is

described as

z=g-0ph(g)z M
Tr=apz+az+asq 2)
where
. __ldl
hay = 2
D@ ©)

— g(1)

)
Vo

Fig. 1 The friction interfaces with bristles between two
surfaces
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Fig. 2 Layout of the ball-screw system
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where ¢ is generalized position, o, is nominal static
friction parameter, and oy, oy, o, are friction parameters
that can be explained as stiffness of bristles, damping
coefficient, and viscous damping coefficient. ‘I-s is the
Stibeck velocity, 7, is static fiction torque, 7, is Coulomb
friction coefficient. The function g{ «) is assumed to be
known and positive and depends on many factors such
as material properties and temperature. In order to consider
the variation of friction torque, T;, it is assumed that the
coefficients, oy, «;, o, are independent unknown positive
constants. As shown in Fig. 2, the motion equation for
a ball-screw system can be represented as follows:

Jij=up—Tf—Td )
where v, is the control input torque, 7 is a lumped
model uncertainty, which contains the friction modeling
error, and J is the moment of inertia of the ball-screw
and DC motor. Introducing Eq. (1) and (2) into Eq. (5),
Eq. (5) can be written as follows:

JG=up, —(aoz - ash(@)z +asq) - T, (6)

where o3 =040y, oy =y .

3. Design of the controller and
observer

The control objective is to design an adaptive back-
stepping control system for the output g of the system
to track the desired position ¢, asymptotically. A proposed
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adaptive back-stepping control system is designed step
by step as follows.

Step 1. For the tracking objective, define the following
position tracking error

N=9-94 Y

and its time derivative is

V1=9-4q @®
Define the following stabilizing function
a1 =qq —kiy O]

where k; is a positive constant. Define the following

Lyapunov function

12
V1—2y1 (10)

Define y, =q¢—q,, then the time derivative of V] is

Vi=y =vi(G-dq) =n(G—a —ky)

= vy —kyyi (1)

Step 2. The time derivative of y, is

Va=q-a

u 1 . . Ty
= 7p_7(a02 —a3h(g)z + a,49) ‘7_0’1 (12)

Now, we introduce the following the dual-observer'”

for estimating immeasurable friction state z

(13)
(14)

Zg =g —0o0h(g)zg + 19
Iy =q-ooh@)z +m
where zAO, z, are estimates for the friction state z and 7,

n, are observer dynamic terms that are to be designed.

The corresponding observation errors are given as follows:

(15)
(16)

Zo = ~00h(§)Z0 — 10

7 = —0oh(9)Z —m
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Next, define the following Lyapunov function

)
Vy=" +=
2 1 2y2 (17)

The time derivative of V, can be induced by the above

results

Vo =W+ 23

2 1 . .
=—kyyi +y,[n —7(0502 —a3h(@)z + ayq)

(18)

In a practical application, since it is difficult to determine
the Tumped uncertainty 7, previously, a RNN approximator
using the DEKF algorithm™ is introduced to estimate the

value of JA’d. DEKF parameters are computed as follows:

-1
r(n) { S Co (K g (n,n~DCT () + R(n)}
k=1

(19)

Gy (n) = Ky (m,n=1)C (T (1) (20)
#(n) = d(n)—d(n/n—-1) @21)
wi(n+1/n)=w, (n/n-1)+ G, (n)g(n) (22)
Ky (n+1,n) = K (n,n-1)= Gy (0)C iy (WK (n,n — 1)
+Qy (n) (23)

where I, is a p-by-p matrix, p denoting the number of
outputs. G, (n} is W,-by-p matrix denoting the Kalman
gain for group k, where W, stands for the number of
weights in group g. #(n) is a p-by-1 vector, denoting the
innovations defined as the difference between the desired
response d(n) for the linearized system and its estimated

d(n/n—1)=C,y (nyw, (n/n—1) (24)

where w,(n/n—1) is a W-by-1 vector, denoting the
estimate of the weight vector z;k(n) for group & at time
n given the observed data up time n-/. K (n,n—1) is a
W,-by- W}, matrix, denoting the error covariance matrix
for group k. It is initialized as X (1,0) =¢ 'I where « is

a small positive constant. The initial weights are small
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values selected from a uniform distribution. At each time
instant, an input pattern is applied to the network, and
the partial derivatives of the output with respect to all the
weights in the network are computed to derive the
linearized measurement matrix, and EKF equations are
applied. All the computations are made real time, and
there is no need for history buffer to save the past values
of weights. Only elements to be saved are the hidden
neuron outputs which play the role of inputs at the next
time instant.

Fig. 3 shows the network structure used in this paper.
Weight matrix w represents the weights leading to the
first hidden unit. It consists of the connections coming
from the past values of hidden unit outputs, input node,
and bias. The past output values of hidden units are
included in vector:

x(n) =[x (n) x3(n)... x4 (n)] 25)

Weight vector w, holds the weights between two hidden
layers, and w, represents the weights leading to linear
output node. =z, is the vector of the outputs of second
hidden layer units. Rewriting Eq. (24), the output of the
RNN is

T, =CLw, (26)

where ¢, =[C G ... ¢]7, q is the number of the layer
m 1 q Y

and W, = [w, w,, w,]7. Then, since exact RNN approxi-

mation to lumped uncertainty can be impossible, define

+1
Second Hidden Layer

taput Layer Fiest Hidden Laver Cuptput Layes

Fig. 3 Recurrent multilayer perceptron with two hidden
layer
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the following reconstructed error £

E=T; T, @7

where it is assumed that |E/< £ and £ is the upper
bound of E, and E is assumed to be constant in during
adaptation.

1, » 2
Va=Vy,+—(E-F
3=V 2,0( ) 28)

where p is a positive constant. E is the estimated value
of the reconstruction error. The time derivative of Eq.
(28) can be written as

V3 =V2 +i(EA—E)E
P

1 . .
= ‘li’12 +12[n “7(0’02 —a3h(q)z +ayq)
u

T, . A x
—P-—d—a1]+i(E—E)E
J P

J 29)

From Eq. (29), an adaptive back-stepping control law
is chosen as follows:
up =Jl=y1—kayy + 1]
+GoZg —G3h(§)3 + s+ Ty +E (30)

where k, is a positive constant. Introducing Eq. (30) into
Eq. (29), then

: 1 ~ o~
Vs =—kiyf —kpy3 *yal=—@oZo + doZo
—a3h(§)7) — a3h(q)Z) + daq)

fd T E 1 al A
+—= +—]+—(E-E)E

_zd
J J
where ay=a, — 0y, o=, 0o, and = o, —a, are un-
known parameter estimate errors. Now, define the following

Lyapunov function

1 2 1 1
Vi =Vi+—apzg +—a3zf +—a,
4 =3 F 5%+ T 27 0
+—1~&32 +—1—07}
2y3 2y4 (32)
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The time derivative of ¥, can be obtained as

; o~ )
Vy =—kiyi —kyy3 — agooh(@)Z5 — a300h(§)7
~ Y2, boaoo k@), 1
+ag(—==2¢ —— o)+ 3 (———2 - —a3)
J Yo J 73

~ .1 s ~
+ 0‘4(—y726] —y—a4)+ Zo(-ap ij‘—aoﬂo)
4

~ . ~ 14
+Ei@s @D —asm)+ E-BF+—B)

The update laws for the parameter estimates can be
determined as follows:

OAlo = —‘}/Jihfo (34)
a3 =12 yahig)in 35)
ay = *y74QJ’2 (36)
and the observer dynamic terms are obtained by
== (37
m =22h(3) 39)

In Eq. (33), the adaptation law for E of the reconstructed

error can be chosen as follows:

i »n
E==p7 (39)

With the above choices for the update laws and the
observer dynamic terms, the Lyapunov derivative in Eq.
(33) becomes

2009

a3o0h(@)

. o
Vy =kt —kays — m@zy —

<—kyyf —ky3 <0 (40)
From the above equation, define Wy(n))
W) =k i +kay3 <—V4(v1,32) @1)

Since V<0, V, is nonincreasing. Thus, it has a limit
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Fig. 4 The proposed adaptive back-stepping control
system using the RNN and disturbance observer

V. @s t—oco. Integrating Eq. (41), then

lim f W (y()dr <~ lim [ Vy(3, 9207
50 t>®
= lim {7, (4(20). ) ~ V4 (4.0}

=Va(t9)t0) —Vas (42)

t
which means that / Wy(r))dr exits and finite. Since

ty
Wy(t))is also uniformly continuous, the following result

can be obtained from Barbalat lemma"?.
lim W(y(t))=0
Since y, and y, converge to zero as t—o, ¢ and ¢
approach ¢, and qd as t—oo. Finally, the back-stepping
control system is asymptotically stable in spite of the
variation of the system parameters and external disturbance.

Fig. 4 represents the proposed adaptive back-stepping
control system using the RNN and disturbance observer.

4, Experiment and discussion

The experiment is executed for the verification of the
precision tracking control of a ball-screw system with
nonlinear dynamic friction. The system components and
parameters are given in Table 1 and 2. Three control
schemes are designed to compare with the proposed control
scheme: an adaptive back-stepping control system (AB
system), adaptive back-stepping control system with a
dual observer (ABFO system), and adaptive back-stepping
control system with a dual observer, RNN and reconstructed
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Table 1 Parameters of ball-screw and friction model

Symbol Value

J 0.246 kg’

T 0.088 Nm

T 0.11 Nm

z,is 0.056 rad/sec

a, 86.4 Nm/vad

oy 4.7 Nmsec/vad
torque constant 0.3 Nm/A
amplifier gain 2.72 AV

Table 2 Specification of system components of the
control system

Item Specification
BM PC Pentium 11, MS-DOS,
C-language

Data Acquisition DRS8330,
board DA resolution : 12 bits
Encoder counter PCL-833Resolution : 32bits
board
Motor driver FDD-106PD
DC servo motor 300W, 3000rpm
Encod ITD 21 B14,

neoder resolution 10000 pulse/rev
Ball-screw THK, CO grade

error estimator (ABFORO system).

The control algorithms are programmed in C code and
the control signals are transmitted into the DC motor
drive through the DR8330 data acquisition board. The
radian position of the ball-screw system is obtained by
the precise encoder coupled with the DC motor shaft.
Fig. 5 shows the command position input and output for
AB system. From Fig. 5, it can be shown that the position
tracking performance is very poor since the friction
disturbs the position performance. Fig. 6 shows

the command position input and output of the ABFO
system where the tracking performances are improved
significantly than that of AB system. The reason is that

the friction observer compensates the friction torque
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Fig. 5 Command position input and output of the AB
system

1 Qutput
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Fig. 6 Command position input and output of the
ABFO system
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Fig. 7 Control input of the ABFO system
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Fig. 8 Command position input and output of the
ABFORO system
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variations in low level ranges. Thus, it can be known that
the friction observer acts an important role to improve the
tracking performances. Fig. 7 shows the control input for
the command position input given in Fig. 6. Fig. 8 and
9 show the command position input and output and
control input of the ABFORO control system where the
tracking performances are also much improved similar to
the ABFO system, but the precise performance is superior

0.10
0.05 ||
M,
£ ool ‘,
0.05 b
-0.10 L 4 4
o 5 10 15 20
Time (sec)
Fig. 9 Control input of the ABFORO system
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o 00001 ¢
h 0.0000
~0.0001 }’
-0.0003 4 . -
o 5 10 18 20
Time {sec)
Fig. 10 Tracking emrors of the ABFO and ABFORO
system
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VY Y /“’w
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i
i
4 ; 1'0 1I5 20

Time (sec)

Fig. 11 The estimated value of the friction state z,
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than the ABFO control system as shown in Fig. 10 since
the RNN and error estimator compensate the unmodeled
friction parameters of the friction model acting the
uncertainty of the system. From Fig. 11 to Fig. 15, the
estimated friction parameters are presented where each

estimated parameter is converged in certain values.

5. Conclusion

In this paper, the robust adaptive control scheme to the
dynamic friction system is proposed to compensate the
friction torque and uncertainty using the back-stepping
control, dual friction observer and RNN method. Some
experiments on the ball-screw system show that the pro-
posed friction compensation scheme gives good tracking
performance compared with the back-stepping control and
only friction observer compensation case. The unmodeled
uncertainty can be effectively compensated by the RNN
and error estimator. Thus, it is shown that the proposed
control system can provide the robustness of the servo
system with nonlinear friction. The proposed control
scheme can be also applied to the precise mechanical
system such as the electro mechanical actuator (EMA),
the electro hydraulic actuator (EHA) and machine tools,
ete.

As the next researches, a robust control using other
RNN methods and recurrent fuzzy neural network will be
developed in a near time.
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