• Title/Summary/Keyword: system of ideals

Search Result 50, Processing Time 0.02 seconds

ON THE STRUCTURES OF CLASS SEMIGROUPS OF QUADRATIC NON-MAXIMAL ORDERS

  • KIM, YONG TAE
    • Honam Mathematical Journal
    • /
    • v.26 no.3
    • /
    • pp.247-256
    • /
    • 2004
  • Buchmann and Williams[1] proposed a key exchange system making use of the properties of the maximal order of an imaginary quadratic field. $H{\ddot{u}}hnlein$ et al. [6,7] also introduced a cryptosystem with trapdoor decryption in the class group of the non-maximal imaginary quadratic order with prime conductor q. Their common techniques are based on the properties of the invertible ideals of the maximal or non-maximal orders respectively. Kim and Moon [8], however, proposed a key-exchange system and a public-key encryption scheme, based on the class semigroups of imaginary quadratic non-maximal orders. In Kim and Moon[8]'s cryptosystem, a non-invertible ideal is chosen as a generator of key-exchange ststem and their secret key is some characteristic value of the ideal on the basis of Zanardo et al.[9]'s quantity for ideal equivalence. In this paper we propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structure of the class semigroup of non-maximal order as finitely disjoint union of groups with some quantities correctly. And then we correct the misconceptions of Zanardo et al.[9] and analyze Kim and Moon[8]'s cryptosystem.

  • PDF

ON THE PUBLIC KEY CRYPTOSYSTEMS OVER CLASS SEMIGROUPS OF IMAGINARY QUADRATIC NON-MAXIMAL ORDERS

  • Kim, Young-Tae;Kim, Chang-Han
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.577-586
    • /
    • 2006
  • In this paper we will propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structures of class SEMIGROUPS of imaginary quadratic orders which were given by Zanardo and Zannier [8], and we will give a general algorithm for calculating power of ideals/classes via the Dirichlet composition of quadratic forms which is applicable to cryptography in the class semigroup of imaginary quadratic non-maximal order and revisit the cryptosystem of Kim and Moon [5] using a Zanardo and Zannier [8]'s quantity as their secret key, in order to analyze Jacobson [7]'s revised cryptosystem based on the class semigroup which is an alternative of Kim and Moon [5]'s.

A characterization of the algebraic multiplicity as a map of grothendieck groups

  • Park, Chan-Bong
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.619-628
    • /
    • 1994
  • The multiplicity theory initiated by C. Chevalley was the one with respect to ideals generated by a system of parameters of a local ring containing a field [3] and [4]. Samuel generalized the definition to primary ideals belonging the maximal ideal of a local ring which contains a field by a device which used the Hilbert characteristic function [9]. Furthermore Samuel defined multiplicity also in local rings which contain no field [10].

  • PDF

WEAKLY PRIME LEFT IDEALS IN NEAR-SUBTRACTION SEMIGROUPS

  • Dheena, P.;Kumar, G. Satheesh
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.3
    • /
    • pp.325-331
    • /
    • 2008
  • In this paper we introduce the notion of weakly prime left ideals in near-subtraction semigroups. Equivalent conditions for a left ideal to be weakly prime are obtained. We have also shown that if (M, L) is a weak $m^*$-system and if P is a left ideal which is maximal with respect to containing L and not meeting M, then P is weakly prime.

Governmentality, Training, and Subjectivation in Mark Twain's A Connecticut Yankee in King Arthur's Court (『아더 왕궁의 코네티컷 양키』에 나타난 근대적 통치성)

  • Kim, Hyejin
    • Journal of English Language & Literature
    • /
    • v.58 no.4
    • /
    • pp.679-700
    • /
    • 2012
  • This study aims to examine Mark Twain's criticism of American capitalistic ideals in the late nineteenth century. During this second industrial revolution, industry showed rapid growth and capitalism established an order, while America suffered under the monopolization of capitalistic conglomerates. This resulted in the widening gap between the rich and the poor and the dehumanization caused by rapid industrialization. In A Connecticut Yankee in King Arthur's Court, Hank Morgan, the protagonist--who represents nineteenth-century America's industrialism, individualism, and capitalism--is sent back in time to the sixth century of Arthurian England. Hank attempts to introduce nineteenth-century technologies and machines to build a capitalistic system in the middle ages. However, Hank's efforts lead to disaster in which the country and civilization he worked to build is completely destroyed. Although Twain does not deny capitalistic ideals, he criticizes the "governmentality" that operates Hank's reform system to the extreme. Hank values efficiency and utilizes human beings as capital. Hank's economic reason not only transforms the Round-Table knights into speculators but also transforms their religious acts and abstract ideals into moneymaking businesses. The destructive ending anticipates the World Wars and the Great Depression in the first half of twentieth century and even serves to predict the dangers that follow.

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

COFINITENESS OF GENERAL LOCAL COHOMOLOGY MODULES FOR SMALL DIMENSIONS

  • Aghapournahr, Moharram;Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1341-1352
    • /
    • 2016
  • Let R be a commutative Noetherian ring, ${\Phi}$ a system of ideals of R and $I{\in}{\Phi}$. In this paper among other things we prove that if M is finitely generated and $t{\in}\mathbb{N}$ such that the R-module $H^i_{\Phi}(M)$ is $FD_{{\leq}1}$ (or weakly Laskerian) for all i < t, then $H^i_{\Phi}(M)$ is ${\Phi}$-cofinite for all i < t and for any $FD_{{\leq}0}$ (or minimax) submodule N of $H^t_{\Phi}(M)$, the R-modules $Hom_R(R/I,H^t_{\Phi}(M)/N)$ and $Ext^1_R(R/I,H^t_{\Phi}(M)/N)$ are finitely generated. Also it is shown that if cd I = 1 or $dimM/IM{\leq}1$ (e.g., $dim\;R/I{\leq}1$) for all $I{\in}{\Phi}$, then the local cohomology module $H^i_{\Phi}(M)$ is ${\Phi}$-cofinite for all $i{\geq}0$. These generalize the main results of Aghapournahr and Bahmanpour [2], Bahmanpour and Naghipour [6, 7]. Also we study cominimaxness and weakly cofiniteness of local cohomology modules with respect to a system of ideals.

연산자로서의 유리수 체계의 구성에 관한 연구

  • Chung, Young-Woo;Kim, Boo-Yoon
    • East Asian mathematical journal
    • /
    • v.28 no.2
    • /
    • pp.135-158
    • /
    • 2012
  • The ideals of the rings of integers are used to induce rational number system as operators(=group homomorphisms). We modify this inducing method to be effective in teaching rational numbers in secondary school. Indeed, this modification provides a nice model for explaining the equality property to define addition and multiplication of rational numbers. Also this will give some explicit ideas for students to understand the concept of 'field' efficiently comparing with the integer number system.

EQUIMULTIPLE GOOD IDEALS WITH HEIGHT 1

  • Kim, Mee-Kyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.127-135
    • /
    • 2002
  • Let I be an ideal in a Gorenstein local ring A with the maximal ideal m. Then we say that I is an equimultiple good ideal in A, if I contains a reduction Q = ( $a_1$, $a_2$,ㆍㆍㆍ, $a_{s}$ ) generated by s elements in A and G(I) =(equation omitted)$_{n 0}$ $I^{n}$ / $I^{n+1}$ of I is a Gorenstein ring with a(G(I)) = 1 - s, where s = h $t_{A}$ I and a(G(I)) denotes the a-invariant of G(I). Let $X_{A}$$^{s}$ denote the set of equimultiple good ideals I in A with h $t_{A}$ I = s, R(I) = A [It] be the Rees algebra of I, and $K_{R(I)}$ denote the canonical module of R(I). Let a I such that $I^{n+l}$ = a $I^{n}$ for some n$\geq$0 and $\mu$$_{A}$(I)$\geq$2, where $\mu$$_{A}$(I) denotes the number of elements in a minimal system of generators of I. Assume that A/I is a Cohen-Macaulay ring. We show that the following conditions are equivalent. (1) $K_{R(I)}$(equation omitted)R(I)+as graded R(I)-modules. (2) $I^2$ = aI and aA : I$\in$ $X^1$$_{A}$._{A}$./.