J. Korean Math. Soc. 31 (1994), No. 4, pp. 619-628

A CHARACTERIZATION OF THE
ALGEBRAIC MULTIPLICITY AS A
MAP OF GROTHENDIECK GROUPS

CHAN-BONG PARK

1. Introduction

The multiplicity theory initiated by C.Chevalley was the one with
respect to ideals generated by a system of parameters of a local ring
containing a field [3] and [4]. Samuel generalized the definition to pri-
mary ideals belonging the maximal ideal of a iocal ring which contains
a field by a device which used the Hilbert characteristic function [9].
Furthermore Samuel defined multiplicity also in local rings which con-
tain no field [10].

As a matter of fact, modern ideas in multiplicity theory sprang from
applications of the theory of Hilbert functions to local rings. More re-
cently, M.Auslander and D.A. Buchsbaum have taken up and extended
an approach first suggested by J.P. Serre. Taey employed the meth-
ods of homological algebra to give an explicit expression for a general
multiplicity in terms of the Euler Poincaré churacteristic of the graded
homology module of a certain Koszul complex. However, since the no-
tion of algebraic multiplicity is of fundamental importance, there may
be interest in an approach which uses neither Hilbert functions nor
homological algebra.

D. J. Wright attempted an approach of this kind by a different road
from the treatments which can be found in K. Blackburn [2], [13].
According to |13.p 269], D. Wright was inspired by theorem 3.3 of
Auslander and Buchsbaum [1, 636]. He defined the general multiplicity
as follows :

If R is a commutative Noetherian ring with unity, if v;,... ,7s is a
sequence of elements of R satisfying the condition that R/(v1,... .7s)
has finite length, and E is a finitely generated R-module, then a symbol
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en(71+- - ,vs |E) is defined taking its values in the integers. A funda-
mental property of the symbol e,(v1,...,7,|E) is additivity on exact
sequences; 1t is an Euler-Poincaré characteristic. M. Fraser general-
1zed the general multiplicity theory without the finiteness of length of
R/(71,... ,7s)R as a homomorphism of the Grothendieck group of the
category of finitely generated R-modules to the Grothendieck group of
the category of finitely generated modules over R/(~;,... ,v,)R. We
will characterize this homomorphism.

2. Preliminaries

Throughout this paper R will be denote a commutative Noetherian
ring with unity. By module we will always mean a finitely generated
unitary R-module. Let y,...,v, € Rand let E/(y;,...,7,)E have a
finite length. Then we will say thaty;, ... ,7, is a multiplicity system
on E.

From now on. y....,7, will be a multiplicity system on each E
and for each R-module E we require that E/(41,...,7,)E has finite
length.

DEFINITION. : Notation as above. We put

C'R(ﬁyls R a’}‘sIE)
:en/-,\n(,YZw-- . 773'E/71E) - 83/713(727- <. a‘y.s’o :E Tl)

under the assumption that the symbols
€rsy, 0725 Ye|E/7 E) and ER/71R(72, A 1] L 1)
are both defined, and we put

¢x-|JE) =L (E)ifs=0.

Such a symbol defined inductively will be called a multiplicity sym-
bol and it will denoted by abbreviation ¢, (y|E) if no confusion can
arise.
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Properties of ¢,
Let 0 — E' — E — E"” — 0 be an exact sequence and ¥;,... ,7s @
multiplicity system on each term, then

en(V|E) = ex(7|E") + ex(v|E"), [13, p 271] .

Let 0 - E, - E,_; — -+ — E; = Ey — 0 be an exact sequence
and vy,... ,~, a multiplicity system on each term. Then

Y (~1)ieqp(v1E) = 0.

1=0

By induction on s, it is easy to prove i) anc ii) together.
The multiplicity symbol has the exchange property :

CR{7IE) == CR(7i15~--s71, IE)»

where {7;,....7,} is a permutation of {1,2,....s} (13, pp 274 —
275].

Let E be a Noetherian R-module and 7q,... ,7, a multiplicity sys-
tern on E.

Assume that for some particular value of 7, y/*E = 0, where m is a

positive integer. then ¢, (v|E) = 0.

v)

Y1, -

( Put z = 1 in iii) and use induction on m [L3, p 272]. )
0 < e, (v|E) < L {E/(v)E}. Use (0: v) = 0, where Fp =
E/(0: ~™) for sufliciently large m [8, p 3(8].

COROLLARY. If(vy,...,7s)E = E then e (y|E) = 0.

3. The Koszul complex

Let 41.....,~, € R. The Koszul complex of E with respect to
.- »7¥s Will be denoted by K (vq,...,7s|E) and it will be abbrevi-

ated by A'(v|E) if no confusion can arise. Qur main tool is the Koszul
complex in the same style as [8].
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Properties of the Koszul complex:

1) Let 0 — E' LESE" - 0 be an exact sequence of R-modules and
Y1,--.57s € R. Then we have ;

0— H,K(~|E') > H,K(y|E) -» H,K(y|E") — ---
— H,K(viE') - H,K(v|E) - H,K(y|E") — -
— HiK(Y|E') —» HyK(7|E) — HoK(7|E") — ) [8, pp 362-363] .

i) Let A = (v,...,75)JR . Then A annihilates 4,K(71,...,7,E)
for all . Here, H,K(~,...,7,|E) are the homology modules with
respect to yi,... , 7, [8, p 364].

iii) The homology modules of the Koszul complexes K (7v,...,v,_1|E)

and K(vi,...,7,|E) are connected through an exact sequence [8, p
365).

—— H,pi K, Ys=1|E) ——— Hyp K(v. ., ¥s|E)
B ("1)”’79 ., .
e HuK(OnlB) N B K v |E)
—— 11;;"‘»(71»”-‘73“5) —— H;L—]l"(”}’l ----- "fs—]IE)
(~1 )“—l'h

» Hy  K(v1,... Ya-1|E) ——— Hy Ky, ..,7%|E)

— Hy_oK(v, ...v:s1|B) — ...
(—1)7e . ) )
———+ HiK(v,...,ve1|E) ——— HiK v, ..  %|E)

i (=11%, . §
———  HoK(v1,....,v1|E} ——— HoK y,... ve=1|E)
e Hol{v1,...,7:|F) ——— 0

w) If (0 iy Vs) = 0, we have
HyK(v1... 1 |E) > HyK(m1, .-, Ya-1|E/7. E) [8, p 368]

THEOREM. Put Ag(7yy,...,7,|E) = Yoo DL A H K (-
vs)|E)}, then

(‘R("/'ln ce ,‘/_,,'E) = /‘t'[{(’)’lv ERRE) 7,]E)[8, P 369] :

To prove this, we need two Lemmas -
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i) Let 0 - E' - E — E” — 0 be an exact sequence of Noetherian
R-modules and suppose that v;,... ,7. is a multiplicity system for
each of them. Then

Xa(n.. 2l E) = Xr(rr. . v B+ Xriyis . 7| E”) [8. p 370].

i) Let E.~v,... .5, be as above. If y"E = 0, where m > 0, then

Xr(11.....75|E) = 0. [8, p 370]

PROO¥ OF THEOREM. We use induction on: s. The theorem is clear
in the case of s = (. Suppose that s > 0 and the theorem has been
established for multiplicity systems with s - 1 elements. Put F =
E/(0:_ ), where m > 0 so that (0: %, = 0. (See 2, V)) Then

applying i) above to the exact sequence

F

0—(0: +") > E—F =0,

we get Xp(y|E) = Xp(7|F) + Xr(7[0: 7).

By ii) above, the last term equals zero. Since 7 is not zero divisor on
F, by property iv) of the Koszul complex

H,K (s valF) >~ HyK (71, et [F/7aF)
$O X[ iy ValF) = Ar(via- o Vel F /) = Xr(7100 57| E)
On the other hand, we have
€e(1e VB = (s el F) = e Yia el F/ G F).
For, from the exact sequence
0—-(0: y")—=E—E/0:_ y™)-—0,

we get an equation ;

ER(‘}’]. e ,’)’3|£:)

=1 Yl F) Fen(y1h 0760 1 ™)) by 2, 1),

E
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The last term equals zero by property 2, iv) of the multiplicity symbol
since

Moreover
erivts sl F) = ep(vive Y1 [F/r F)

by a similar argument as used in basic property v) of the multiplicity
symbol since (0 L vs) = 0. The last term of the abov= equation equals
Xr(71y. ..y Ys—11F/vsF) by the induction hypothesis. Therefore,

Xr(Y1, o Yot |F/vF) = Ar(1y .., Ys|F) = Xrim, . 76| E).

This is the reguired result.

4. Algebraic multiplicity as a map of the Grothendieck
group of some abelian category

Let C be an abelian category and K°(C) its Grothendieck group of
C.
In the special case of the category of all finitely generated R-modules
its Grothendieck group will be denoted by K(R) and [E] will denote
the class of £ in K'%(C) for E € C.
Let y1,... .7+ € R and I be the ideal generated by ~,... ,v,. Define
a mapping Xp(v,...,7s) : K(R) — K(R/I) by

Xr(v1.- -, 1) [E]
=3 (~1)'[HK(m.....7|E)] and if s = 0, put A'g(")|E] = [E]
=0
1e., identity map. Recall H;K{yy,...,7|FE) = 0if « < 0 and ¢ > s,

and TH;K(v1,...,7vs|E)=0for all 0 <17 < s (see 3, ii)) and therefore
HK(v,....75|F) can be regarded as an R/I-modul.

Properties of the map Xy(y,,...,7,)
1) Let I = (71,...,7) and 0 — E' - E — E" -+ 0 be an exact
sequence of C then

Xe(v1s - 1B = Xr(11s- ) B+ Xr(vi, 70 [ET]-
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Proof. Split up the exact sequence obtained in 1) of 3 into short

exact sequences:

H,K(~|E) — H,K(~|E}
e N e ™~
0 m ), mne,
7 e N N
0 0 0 0

——HK(A|E") — H, 1K(v1, v._1 |E")

/ N / N
im ¢, A, my,
/ e N N
0 0 0 0
— Hey K, (%1 1E) — Ho i K(w, - yae1 |E)
S N e N
im Yo im Pa—1 Ay
/‘ / \\ \
0 0 0 0
S
Then,

it 1>8==>A04, =0 [HK(7[E")) = [im Aipq] + [ im 1]
]

0<i<s, (HiK(y|E)] = [ im ¢} + [ im ¢;]

[H,K(v|E")] = im &)+ [im A,]

From these, we have

HiK(y|E)] = [HiK(y|E")] - imA41] + [H:K(v]|E")] - [imA,]

But [im Ay ]+ [im A;; = 0.

Therefore,
/YR(’}'] ...... "/,)[E] = ,:VR(")’[ b ,73)[E'] + (YR(’yl. N ,’)’3)[E"].
i) If 97 E = 0 for some n then

(YR(’T[, ey ’)’s)[E] = é)_
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We replace v, by v, by the exchange property 2, 11). From the basic
property 3, 1ii) looking at three terms

— H.K(I|E)—- H,_,K(I|E) R H,_\K(1,|E) —.
we have that

"YR(')'L s vv.s)[EJ = XR(%,- . 'aﬂ/s'—l)(E)'*"YR('ylw cen a1 )(E) =0

ii) If 4 is not zero divisor on E. Then

Ar(vi. ) E] = Xp(yz, ... A E/r E]

Proof. Use the basic property 3, iv).

5. The Main theorem

THEOREM. Let R be a commutative noctherian ring with unity
and C be the categorv of all finitely generated unitary R-modules.
Choose v1,... .9,,... .7, € R and let L, be the ideal generated by
{715 -4 ) with 3, deleted.

Suppose that for each pair (I, E) for E € C,y(I) i+ a map K(R) —
K(R/I) satisfying the followings :
1) If0-— E' -5 FE — E" - 01is an exact sequence in { g, then

P(1[E) = o(D[E') + $(I)[E").

2) f v E = 0 for some integers m > (), where v; is one of ;... 7,,
then
i DE] = 0
3) I (0:, ¥) = 0. then v(I)[E] = o(I,,)[E/y, E).
4) ¢(-)[E] = [E].
Then XYr(7y;,....v,) = ¢(I).

Proof. That AX'g(y1,...,v,) satisfies 1) - 4) has been already es-
tablished. Conversely we shall prove that the above map must be
Xr(Y1,....74). To begin with we recall the statement which was used
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in 1. Let E be a Noethenian R-module and v € R. Put F = E/(0 :_
™). Then (0: ) = 0 provided that m is sufficiently large. We use
induction on s. When s = 0, the theorem is true by condition 4). It
will therefore be supposed that s > 0 and that the thoerem has been
established for s — 1 elements. Put F'= E/(0 ™), where m is cho-
sen large enough to ensure that v, is not a zero divisor on F. This is
possible by 2, v). Then by applyving condition 1) te the exact sequence

0-0: 1" = E—F~—0,

we have (I[E] = »(D[0:, 7] + v(1)[F],

which by condition 2 reduces to (I ;[E] = ¢(I)[F].

Furthermore since (0:  v,) = 0, by condition 3)

G(DF] = oI/ (vDF/7eF) = Ar(11,- s 7e-1)[F/r.F).

Since H,K(~y,....7|F)~ HK(71,...,Ys-1|F/vsF),

by the basic property of the Koszul complex it follows that
'X’R(’)lw LR | 7'9)[-[;’] = ‘1’[{(7] yrotvy ﬁ)/s -1 )['F’/FYSF}

and therefore Xgr(71,..., %) E] = Xr(y1.. s ye= | F/7sF] = ¥(I)

[E]. Thus the theorem is proved.
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