• Title/Summary/Keyword: swing phase

Search Result 255, Processing Time 0.033 seconds

A Technique to Induce Maximum Oscillating Voltage in BJT Clapp VCO's Resonator (BJT 클랩 전압제어 발진기의 공진기에서 최대 발진전압 도출기법)

  • Jeon Man-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.149-155
    • /
    • 2006
  • A technique used to induce maximum oscillating voltage in the BJT Clapp VCO is presented. The technique finds the optimal feedback capacitance values resulting in the largest oscillating signal swing across the resonator at a given bias state and the VCO's center frequency. By doing so, the presented technique attains the lowest phase noise which the BJT Clapp VCO can have. An analysis of the measurement results of the fabricated oscillators has verified that the VCO with the optimal feedback capacitance values actually exhibits the lowest phase noise.

Degradation of Polycrystalline Silicon Thin Film Transistor by Inducing Stress (스트레스 인가에 의한 다결정 실리콘 박막 트랜지스터의 열화 특성)

  • 백도현;이용재
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.322-325
    • /
    • 2000
  • N-channel poly-Si TFT, Processed by Solid Phase Crystalline(SPC) on a glass substrate, has been investigated by measuring its electrical properties before and after electrical stressing. It is observed that the threshold voltage shift due to electrical stress varies with various stress conditions. Threshold voltages measured in 1.5$\mu\textrm{m}$ and 3$\mu\textrm{m}$ poly-Si TFTs are 3.3V, 3.V respectively. With the threshold voltage shia the degradation of transconductance(G$\_$m/) and subthreshold swing(S) is also observed.

  • PDF

Stress-Bias Effect on Poly-Si TFT's on Glass Substrate

  • Baek, Do-Hyun;Yong Jae lee
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.933-936
    • /
    • 2000
  • N-channel poly-Si TFT, processed by Solid Phase Crystalline(SPC) on a glass substrate, has been investigated by measuring its electrical properties before and after stressing. It is observed that the threshold voltage shift due to electrical stress varies with various stress conditions. Threshold voltages measured in 1.5um and 3um poly-Si TFT’s are 3.3V, 37V respectively. With the threshold voltage shift, the degradation of transconductance and subthreshold swing is also observed.

  • PDF

A Fast Converging Pulse Coupling Oscillator Synchronicity Model

  • Yu, Niu;d'Auriol, Brian J.;Lee, Sung-Young;Lee, Young-Koo
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.860-861
    • /
    • 2007
  • The Pulse Coupling Oscillator (PCO) is a synchronicity model inspired by nature. However, the PCO model has some limitations. The Fast PCO model is proposed in this paper. It addresses the problem of the phase swing actions in the original PCO model. Benefits are the fast synchronicity speed and associated energy saving.

Development and Evaluation of a New Gait Phase Detection System using FSR Sensors and a Gyrosensor (저항센서와자이로센서를이용한새로운보행주기검출시스템의개발및평가)

  • Ahn Seung Chan;Hwang Sung Jae;Kang Sung Jae;Kim Young Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.196-203
    • /
    • 2004
  • In this study, a new gait phase detection system using both FSR(Force Sensing Resister) sensors and a gyrosensor was developed to detect various gait patterns. FSR sensors were put in self-designed shoe insoles and a gyrosensor was attached to the posterior aspect of a shoe. An algorithm was also developed to determine eight different gait transitions among four gait phases: heel-strike, foot-flat, heel-off and swing. The developed system was compared with the conventional gait phase detection system using only FSR sensors in various gait experiments such as level walking, fore-foot walking and stair walking. In fore-foot walking and stair walking, the developed system showed much better accuracy and reliability to detect gait phases. The developed gait phase detection system using both FSR sensors and a gyrosensor will be helpful not only to determine pathological gait phases but to apply prosthetics, orthotics and functional electrical stimulation to patients with gait disorders.

Time Difference of the COP Displacement according Obstacle Height during Obstacle Crossing in Older Adults (노인의 장애물 보행 시 장애물 높이에 의한 압력중심 이동시간의 차이)

  • Park, Seol;Kim, Kyoung;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • Purpose: This study examined the difference in the center of pressure (COP) displacement time in older adults according to the obstacle height during stance at each sub.phase when crossing obstacles. Methods: Fifteen older adults were enrolled in this study (${\geq}65$ years of age). The F-scan was used to measure the COP displacement time when crossing a 0, 10 and 40cm obstacle, and the stance phase was divided into 4 sub-phases according to the foot contact pattern. Results: During the stance phase, the COP displacement time increased with increasing obstacle height. During the mid-stance, terminal stance and pre-swing except for the loading response, there were significant differences in the COP displacement time according to the obstacle height. Conclusion: This study suggests that older adults show differences in the COP displacement time according to the stance sub-phase while crossing obstacles, and they use different mechanisms according the sub-phases to maintain balance during obstacle crossing.

The 3-D Motion Analysis of Kinematic Variety on Lower Extremity during Ramp Ascent at Different Inclinations (정상인의 오름 경사로 보행 시 경사각에 따른 하지 관절의 삼차원적 동작 분석)

  • Han, Jin-Tae;Lee, Jong-Dae;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.4
    • /
    • pp.633-650
    • /
    • 2005
  • The aim of this study was to investigate the kinematics of young adults during ascent ramp climbing at different inclinations. Twenty-three subjects ascended a four step at four different inclinations(level, $8^{\circ},\;16^{\circ},\;24^{\circ}$). The 3-D kinematics was analysed by a camera-based falcon system. Groups difference was tested with one -way ANOVA and SNK test. The different kinematic patterns of ramp ascent were analysed and compared to level walking patterns. The kinematics of ramp walking could be clearly distinguished from the kinematics of level walking. In sagittal plane, Ankle joint was more dorsiflexed at initial contact and Max. dorsiflex. during stance phase with $16^{\circ},\;24^{\circ}$ inclination and more plantarflexed at toe off and Max. plantarflex. during swing phase with $24^{\circ}$(p<.001). Knee joint was more flexed at initial contact with $16^{\circ},\;24^{\circ}$ inclination(p<.001). Hip joint was more flexed at initial contact and Max. flex. during swing phase with $16^{\circ},\;24^{\circ}$ inclination and at toe off with $24^{\circ}$(p<.001) and was more extended at Max. ext. during stance phase with $24^{\circ}$(p<.05). In frontal plane, ankle joint was more everted at Max. eversion. during stance phase with $16^{\circ},\;24^{\circ}$ inclination(p<.001). Knee joint was more increased at Max. varus. during stance phase with $16^{\circ},\;24^{\circ}$ inclination(p<.001). Hip joint was not differentiated with different inclinations. In horizontal plane, all joints were not differentiated with different inclinations. Conclusionally, In ascent ramp walking, the different gait pattern generally occurred at over $16^{\circ}$ on the ascending ramp in sagittal and frontal plane. These results suggest that there is a certain inclination angle or angular range where subjects do switch between a level walking and a ascent ramp walking gait pattern. This shows their motor control strategy between level and ascent ramp walking. Further studies are necessary to confirm and detect the ascent ramp gait patterns.

  • PDF

Kinematic Analyses of Women's Pole Vault in IAAF World Championships, Daegu 2011 (2011 대구 세계육상선수권대회 여자 장대높이뛰기경기 기술의 운동학적 분석)

  • Choi, Kyoo-Jeong;Yi, Kyung-Ok;Kim, Nam-Hee;Kang, Ji-Eun;Kim, Hye-Lim
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.561-571
    • /
    • 2011
  • The purpose of this study was to perform the kinematic analyses of the women's pole vault skills in IAAF World Championships Daegu 2011. Subjects were the 1st through 8th place finishers in the pole vault. The kinematic analyses were divided into four phases: two dimensional run up analysis, and three dimensional analyses for the remaining plant, swing up, and extension phases. Run-up variables consisted of run up distance, number of steps, average step length, ratio of step length to height, average velocity at the final 5~10 m, approach position. Three variables were analyzed during plant: pole angle, center of gravity (COG) velocity, and COG takeoff angle. Swing up phase variables included: pole flection angle, COG velocity (horizontal, vertical, resultant), COG trajectory and bar approach angle of COG. Compared to the 2009 World Championships in Berlin, the average vault height increased, while run up velocity and approach position were almost unchanged. However, horizontal velocity during the last two steps of the final approach decreased noticeably compared to speeds from 1990. These results reflect the change in both technique and physical fitness in pole vaulters. During extension, the peak height of COG surpassed the clearance height by an average of 0.11m. These specific results can help coaches and athletes modify training and improve performance.

An Analysis on Kinematically Contributing Factors at Impact of Forehand Drive Motion in Squash (스쿼시 포핸드 드라이브 동작의 임팩트시 운동학적 주요요인 분석)

  • Lee, Kyung-Il;Lee, Hee-Kyung
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.29-39
    • /
    • 2007
  • This study were obtained elapsed time phase-by-phases, displacement, user angle, velocity and angular velocity to analyse kinematically contributing factors at impact of forehand drive motion, on targeting three male players. The results of the study were presented as follows; In the forehand drive swing, the elapsed time by phases was a total of .52 seconds: .30 seconds from backswing to impact and .22 seconds from impact to follow-through, Considering the mean change in locations of COM of each(part$\rightarrow$body segment) at impact, racket head, left shoulder, right wrist and left hip, the left-right directions(X-axis) were showm to be each $.61{\pm}.03$, $1.19{\pm}.08$, $.66{\pm}.03$, $.94{\pm}.06$, and $.45{\pm}.03m$. The displacement differences of COM of each body segment were shown to be -.57, -.05, -.33, and .16m. For the vertical direction(Z-axis), the center of mass was lowest at impact and highest at E3. For the displacement of the right wrist on the left hip, the right wrist moved to .82m to the lower direction without change in the locations of the hip from E1 from E2. When the left hip moved .02m from E2 to E3, the right wrist moved .7m in the upper direction. In respect to the velocity of each body segment, the hip and the shoulder joint accelerated and then the wrist followed. Then the right wrists of all the subjects and their racket heads showed maximum speed, and an effective swing was observed. At the angle of each part, the angle of the right wrist was the smallest at the backswing and the largest at the moment of the impact. Then it increased gradually in the follow-through section. In respect of angular velocity for subject A, the hip moved and the largest change occurred. Immediately before the impact, the subject made a swing using his right wrist, his hip, and the shoulder joint, showing the maximum value, which was judged to be effective.

Gait Analysis of the Chronic Lumbosacral Radiculopathic Patients (만성 요천추부 신경근병증 환자의 보행분석)

  • Choi, Byung-Ok;You, Jae-Eung;Jung, Seok
    • Physical Therapy Korea
    • /
    • v.11 no.3
    • /
    • pp.19-24
    • /
    • 2004
  • The purposes of this study were to analyze gait patterns of patients with chronic lumboscaral radiculopathy and to investigate gait parameters which can reflect a functional deficit in relation to the level of lumbosacral radiculopathy. The study population consisted of 25 patients of chronic lumbosacral radiculopathy and 25 healthy control subjects. Conventional physical examinations and three-dimensional gait analyses were performed on all participants. The data were analyzed using an independent sample t-test. The results were as follows: (1) In the patients' group, cadence, walking velocity, stride length and double support time were less than in the control group (p<.05). (2) In the patients' group, maximum flexion of hip, maximum flexion of loading response, maximum flexion of swing phase on the knee and maximum plantar flexion of pre-swing were less than the control group (p<.05). Using three-dimensional gait analysis, we could identify specific gait parameters to reflect a functional deficit related to the level of lumbosacral radiculopathy.

  • PDF