• Title/Summary/Keyword: swept source

Search Result 42, Processing Time 0.025 seconds

Realization of Swept Source-Optical Coherence Tomography using FDML Laser (FDML 방식 스위핑 광원을 사용한 SS-OCT 구현)

  • Eom, Jin-Seob
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • In this paper, the swept source-optical coherence tomography system using frequency domain mode locked(FDML) laser has realized. The FDML swept source laser showed 55.03 kHz sweeping speed, 125 nm sweeping range, and 9 mW output optical power, which are the superiority of FDML laser compared to previous swept source lasers. Also, through the cross-sectional image captured at 5 frames per second for a mirror, a 1 mm-thickness glass plate, and a thumb bottom, the performance of the system has demonstrated.

Broadband Wavelength-swept Raman Laser for Fourier-domain Mode Locked Swept-source OCT

  • Lee, Hyung-Seok;Jung, Eun-Joo;Jeong, Myung-Yung;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.316-320
    • /
    • 2009
  • A novel broadband wavelength-swept Raman laser was used to implement Fourier-domain mode locked (FDML) swept-source optical coherence tomography (SS-OCT). Instead of a conventional semiconductor optical amplifier, this study used broadband optical fiber Raman amplification, over 50 nm centered around 1545 nm, using a multi-wavelength optical pumping scheme, which was implemented with the four laser diodes at the center wavelengths of 1425, 1435, 1455 and 1465 nm, respectively, and the maximum operating power of 150 mW each. The operating swept frequency of the laser was determined to 16.7 kHz from the FDML condition of 12 km optical fiber in the ring cavity. The OCT images were obtained using the novel broadband wavelengthswept Raman laser source.

Development of Wavelength Swept Laser by using the two SOAs parallel configuration (SOA 2개의 병렬연결을 통한 파장 가변 레이저 개발)

  • Kim, Hoon-Sup;Eom, Jin-Seob
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.235-238
    • /
    • 2008
  • In this paper, we have developed wavelength swept laser system for the swept source optical coherence tomography(SS-OCT). A laser is constructed by using the two SOAs parallel configuration, fiber Fabry-Perot tunable filter(FFP-TF). The wavelength sweeps are repetitively generated with the repetition period of 50Hz. The wavelength tuning range of the laser is more than FWHM of 80nm centered at the wavelength of 1310nm and the line-width of the source is 0.12 nm.

  • PDF

Acquirement of cross-sectional image by using wavelength swept laser within the two SOAs parallel configuration (병렬 SOA 구조의 파장가변 레이저를 이용한 단면 영상획득)

  • Kim, Hoon-Sup;Eom, Jin-Seob
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.239-244
    • /
    • 2008
  • We have realized the swept source optical coherence tomography(SS-OCT) by using the self-fabricated wavelength swept laser(wavelength tuning range : 80nm, line-width : 0.12nm, wavelength sweeping rate : 50Hz). In addition, we have used the dual balanced detector that could make a mirror image in OCT display suppressed. We can also fabricate the comb filter of Michelson interferometer type for fast-signal processing in OCT. Using this SS-OCT system for measuring an mirror, a 1mm-depth glass and an onion, we confirmed that the in vivo epidermal cross-sectional images for them can be obtained appropriately.

  • PDF

Acquirement of in vivo epidermal cross-sectional image by using swept source optical coherence tomography (SS-OCT 방식을 이용한 생체의 표피단면 영상 획득)

  • Kim, Hoon-Sup;Lim, Hae-Jin;Eom, Jin-Seob
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.163-166
    • /
    • 2008
  • In this paper, the swept source optical coherence tomography system has realized using a free-space interferometer based on a beam splitter. Personal computer has completed the control for tunable wavelength laser digitally and the B-scan motor as well. From each experiment for an onion and a salmon egg, we confirmed that the in vivo epidermal cross-sectional images for them can be obtained appropriately.

  • PDF

Fourier Domain Optical Coherence Tomography for Retinal Imaging with 800-nm Swept Source: Real-time Resampling in k-domain

  • Lee, Sang-Won;Song, Hyun-Woo;Kim, Bong-Kyu;Jung, Moon-Youn;Kim, Seung-Hwan;Cho, Jae-Du;Kim, Chang-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.293-299
    • /
    • 2011
  • In this study, we demonstrated Fourier-domain/swept-source optical coherence tomography (FD/SS-OCT) at a center wavelength of 800 nm for in vivo human retinal imaging. A wavelength-swept source was constructed with a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, isolators, and a fiber coupler in a ring cavity. Our swept source produced a laser output with a tuning range of 42 nm (779 to 821 nm) and an average power of 3.9 mW. The wavelength-swept speed in this configuration with bidirectionality is 2,000 axial scans per second. In addition, we suggested a modified zero-crossing method to achieve equal sample spacing in the wavenumber (k) domain and to increase the image depth range. FD/SS-OCT has a sensitivity of ~89.7 dB and an axial resolution of 10.4 ${\mu}m$ in air. When a retinal image with 2,000 A-lines/frame is obtained, an acquisition speed of 2.0 fps is achieved.

Time-encoded Near-infrared (NIR) Spectroscopic Comparison of Absorbance Measurement Using an Acousto-optic NIR Swept Laser Source (음향광학 파장선택 필터 기반 파장훑음 레이저를 이용한 시간-인코딩 된 근적외선 흡광도 측정 비교 연구)

  • Jang, Hansol;Kim, Gyeong Hun;Han, Ga-Hee;Cho, Jaedu;Kim, Chang-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Time-encoded near-infrared spectroscopy (NIRS) system is proposed, based on a near-infrared (NIR) swept laser source, for comparison to the conventional NIRS method using a detector-type spectrometer. The cavity of the NIR swept laser source consists of a semiconductor optical amplifier (SOA) with a gain region around 800 nm, and several fiber-optic components. To change the output wavelength in time using an applied electric radio-frequency signal, an acousto-optic tunable filter (AOTF) is introduced in the fiber ring cavity configuration. To demonstrate the feasibility of an NIR swept laser source for NIRS imaging, the spectroscopic comparison of two kinds of absorbance-measuring systems a detector-type spectrometer using a white light source, and a source-type spectrometer using an NIR swept laser is successfully performed with an NIR-absorbing dye.

Comb-spacing-swept Source Using Differential Polarization Delay Line for Interferometric 3-dimensional Imaging

  • Park, Sang Min;Park, So Young;Kim, Chang-Seok
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • We present a broad-bandwidth comb-spacing-swept source (CSWS) based on a differential polarization delay line (DPDL) for interferometric three-dimensional (3D) imaging. The comb spacing of the CSWS is repeatedly swept by the tunable DPDL in the multiwavelength source to provide depth-scanning optical coherence tomography (OCT). As the polarization differential delay of the DPDL is tuned from 5 to 15 ps, the comb spacing along the wavelength continuously varies from 1.6 to 0.53 nm, respectively. The wavelength range of various semiconductor optical amplifiers and the cavity feedback ratio of the tunable fiber coupler are experimentally selected to obtain optimal conditions for a broader 3-dB bandwidth of the multiwavelength spectrum and thus provide a higher axial resolution of $35{\mu}m$ in interferometric OCT imaging. The proposed CSWS-OCT has a simple imaging interferometer configuration without reference-path scanning and a simple imaging process without the complex Fourier transform. 3D surface images of a via-hole structure on a printed circuit board and the top surface of a coin were acquired.

Swept Source-Optical Coherence Tomography Using New Recalibration Method for Nonlinear Sweeping Laser (광원의 비선형 파장스위핑이 보정된 SS-OCT)

  • Eom, Jin-Seob
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.68-74
    • /
    • 2012
  • In this paper, Frequency Domain Mode Locked(FDML) wavelength swept laser with 55.027 kHz sweeping speed and 125 nm sweeping range has realized, and also a new method for recalibrating a nonlinear frequency sweeping of a swept laser has proposed. The Swept Source-Optical Coherence Tomography system using the proposed method has performed. For a mirror surface, the system showed the very clean 2-dimensional image and the advanced image speed of 7 frames per sec compared to the previous recalibration method.

Measurement of Hysteresis in PZT-Type Tunable Filters Utilizing OFDR (OFDR을 이용한 PZT형 파장가변 필터의 이력 측정)

  • Park, Do-Hyun;Yeh, Yun-Hae
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2008
  • Implementation of a wavelength-swept source with constant tuning rate adopting a PZT-type tunable filter, requires the knowledge of hysteresis of the filter used. The hysteresis must be considered to avoid any degradation in resolution of the optical frequency domain reflectometry (OFDR) system. An optical spectrum analyzer (OSA) could be used to do the hysteresis measurement, but its measurement time is too long for the high-speed driving conditions for the filter. We proposed a new hysteresis measurement method based on OFDR, which could measure the hysteresis in a real driving condition. A hysteresis measurement apparatus consisted of wavelength-swept source, interferometer, signal processing unit, and PC program is built and used to do the measurement. It is concluded that the new method is useful in the measurement of hysteresis at real driving conditions by successfully implementing a swept-wavelength source whose wavelength change is linear in time.