DOI QR코드

DOI QR Code

Time-encoded Near-infrared (NIR) Spectroscopic Comparison of Absorbance Measurement Using an Acousto-optic NIR Swept Laser Source

음향광학 파장선택 필터 기반 파장훑음 레이저를 이용한 시간-인코딩 된 근적외선 흡광도 측정 비교 연구

  • Jang, Hansol (Department of Cogno Mechatronics Engineering, Pusan National University) ;
  • Kim, Gyeong Hun (Department of Cogno Mechatronics Engineering, Pusan National University) ;
  • Han, Ga-Hee (Department of Cogno Mechatronics Engineering, Pusan National University) ;
  • Cho, Jaedu (Center for Functional Onco Imaging, University of California at Irvine) ;
  • Kim, Chang-Seok (Department of Cogno Mechatronics Engineering, Pusan National University)
  • 장한솔 (부산대학교 인지메카트로닉스공학과) ;
  • 김경훈 (부산대학교 인지메카트로닉스공학과) ;
  • 한가희 (부산대학교 인지메카트로닉스공학과) ;
  • 조재두 (캘리포니아 대학교 어바인 캠퍼스 기능성 종양 영상 센터) ;
  • 김창석 (부산대학교 인지메카트로닉스공학과)
  • Received : 2017.01.20
  • Accepted : 2017.02.20
  • Published : 2017.02.25

Abstract

Time-encoded near-infrared spectroscopy (NIRS) system is proposed, based on a near-infrared (NIR) swept laser source, for comparison to the conventional NIRS method using a detector-type spectrometer. The cavity of the NIR swept laser source consists of a semiconductor optical amplifier (SOA) with a gain region around 800 nm, and several fiber-optic components. To change the output wavelength in time using an applied electric radio-frequency signal, an acousto-optic tunable filter (AOTF) is introduced in the fiber ring cavity configuration. To demonstrate the feasibility of an NIR swept laser source for NIRS imaging, the spectroscopic comparison of two kinds of absorbance-measuring systems a detector-type spectrometer using a white light source, and a source-type spectrometer using an NIR swept laser is successfully performed with an NIR-absorbing dye.

본 논문에서는 음향광학 파장선택 필터(acousto-optic tunable filter) 기반의 파장훑음 레이저(wavelength swept laser)를 이용한 시간-인코딩 근적외선 분광 기술(time-encoded near-infrared spectroscopy)을 제안하였다. 파장훑음 레이저는 800 nm 근처 영역에서 이득 스펙트럼을 가지는 반도체 광 증폭기(semiconductor optical amplifier)를 기반으로 제작되었으며, 음향광학 파장선택 필터를 공진기 내부에 삽입함으로써 음향광학 파장선택 필터에 인가되는 전기적 라디오주파수에 따라 출력 파장을 선택할 수 있도록 하였다. 본 연구에서는 종래의 기술인 백색광 분광기 기반의 검출부 분광 근적외선 분광 기술과 제안된 파장훑음 레이저 기반의 광원부 분광 근적외선 분광 기술을 각각 이용하여 근적외선 흡수 염료 샘플의 흡광도를 각기 측정하여 실험적으로 비교함으로써 본 연구에서 제안하는 음향광학 파장선택 필터 기반 파장훑음 레이저를 이용한 근적외선 분광 기술의 특성을 증명하였다.

Keywords

References

  1. P. Rolfe, "In Vivo Near-Infrared Spectroscopy," Annu. Rev. Biomed. Eng. 2, 715-754 (2000). https://doi.org/10.1146/annurev.bioeng.2.1.715
  2. C. Pasquini, "Near Infrared Spectroscopy: Fundamentals, Practical Aspects and Analytical Applications," J. Braz. Chem. Soc. 14, 198-210 (2003). https://doi.org/10.1590/S0103-50532003000200006
  3. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999). https://doi.org/10.1088/0031-9155/44/4/012
  4. S. L. Jacques, "Optical properties of biological tissues: a review," Phys. Med. Biol. 58, 37-61 (2013).
  5. N. Shah, A. E. Cerussi, D. Jakubowski, D. Hsiang, J. Bulter, and B. J. Tromberg, "The role of diffuse optical spectroscopy in the clinical management of breast cancer," Disease Markers 19, 95-105 (2004). https://doi.org/10.1155/2004/460797
  6. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. V. Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999). https://doi.org/10.1364/AO.38.006628
  7. K. Kodate and Y. Komai, "Compact spectroscopic sensor using an arrayed waveguide grating," J. Opt. A: Pure Appl. Opt. 10, 044011 (2008). https://doi.org/10.1088/1464-4258/10/4/044011
  8. E. P. Wagner, B. W. Smith, S. Madden, J. D. Winefordner, and M. Mignardi, "Construction and Evaluation of a Visible Spectrometer Using Digital Micromirror Spatial Light Modulation," Appl. Spectrosc. 49, 1715-1719 (1995). https://doi.org/10.1366/0003702953965731
  9. N. Gupta and R. Dahmani, "AOTF Raman spectrometer for remote detection of explosives," Spectrochim. Acta Mol. Biomol. Spectrosc. 56, 1453-1456 (2000). https://doi.org/10.1016/S1386-1425(99)00265-6
  10. M. Ferrari and V. Quaresima, "A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application," Neuroimage 63, 921-935 (2012). https://doi.org/10.1016/j.neuroimage.2012.03.049
  11. J. S. Park, M. Y. Jeong, and C. S. Kim, "Post-tuning of Sample Position in Common-path Swept-source Optical Coherence Tomography," J. Opt. Soc. Korea 15, 380-385 (2011). https://doi.org/10.3807/JOSK.2011.15.4.380
  12. I. C. Chang, "Acousto-optic tunable filters," Opt. Eng. 20, 206824 (1981).
  13. R. N. Clark, T. V. V. King, M. Klejwa, and G. A. Swaze, "High Spectral Resolution Reflectance Spectroscopy of Minerals," J. Geophys. Res. 95, 653-680 (1990).
  14. J. Cho, G. Gulsen, and C. Kim, "800-nm-centered swept laser for spectroscopic optical coherence tomography," Laser phys. 24, 045605 (2014). https://doi.org/10.1088/1054-660X/24/4/045605
  15. C. Palmer, and E. Loewen, Diffraction Grating Handbook (Newport Corporation, sixth edition, 2005), Chapter 2.
  16. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, "High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs," Opt. Express 16, 2547-2554 (2008). https://doi.org/10.1364/OE.16.002547