DOI QR코드

DOI QR Code

Fourier Domain Optical Coherence Tomography for Retinal Imaging with 800-nm Swept Source: Real-time Resampling in k-domain

  • Lee, Sang-Won (BT Convergence Research Department, IT Convergence Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Song, Hyun-Woo (BT Convergence Research Department, IT Convergence Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Bong-Kyu (BT Convergence Research Department, IT Convergence Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Jung, Moon-Youn (BT Convergence Research Department, IT Convergence Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Seung-Hwan (BT Convergence Research Department, IT Convergence Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Cho, Jae-Du (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Chang-Seok (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • Received : 2011.04.27
  • Accepted : 2011.08.18
  • Published : 2011.09.25

Abstract

In this study, we demonstrated Fourier-domain/swept-source optical coherence tomography (FD/SS-OCT) at a center wavelength of 800 nm for in vivo human retinal imaging. A wavelength-swept source was constructed with a semiconductor optical amplifier, a fiber Fabry-Perot tunable filter, isolators, and a fiber coupler in a ring cavity. Our swept source produced a laser output with a tuning range of 42 nm (779 to 821 nm) and an average power of 3.9 mW. The wavelength-swept speed in this configuration with bidirectionality is 2,000 axial scans per second. In addition, we suggested a modified zero-crossing method to achieve equal sample spacing in the wavenumber (k) domain and to increase the image depth range. FD/SS-OCT has a sensitivity of ~89.7 dB and an axial resolution of 10.4 ${\mu}m$ in air. When a retinal image with 2,000 A-lines/frame is obtained, an acquisition speed of 2.0 fps is achieved.

Keywords

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). https://doi.org/10.1126/science.1957169
  2. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995). https://doi.org/10.1016/S0161-6420(95)31032-9
  3. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, "Optical coherence tomography: a new tool for glaucoma diagnosis," Curr. Opin. Ophthalmol. 6, 89-95 (1995). https://doi.org/10.1097/00055735-199504000-00014
  4. J. S. Schuman, M. R. Hee, C. A. Puliafito, C. Wong, T. Pedut-Kloizman, C. P. Lin, E. Hertzmark, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography," Arch. Ophthalmol. 113, 586-596 (1995). https://doi.org/10.1001/archopht.1995.01100050054031
  5. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, "Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography," Arch. Ophthalmol. 112, 1584-1589 (1994). https://doi.org/10.1001/archopht.1994.01090240090031
  6. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). https://doi.org/10.1364/OE.11.000889
  7. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). https://doi.org/10.1364/OE.11.002183
  8. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-3604 (2003). https://doi.org/10.1364/OE.11.003598
  9. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-highspeed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003). https://doi.org/10.1364/OE.11.003490
  10. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005). https://doi.org/10.1364/OPEX.13.010652
  11. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). https://doi.org/10.1364/OPEX.12.002404
  12. S.-W. Lee, H.-W. Jeong, B.-M. Kim, Y.-C. Ahn, W. Jung, and Z. Chen, "Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 ${\mu}m$," J. Korean Phys. Soc. 55, 2354-2360 (2009). https://doi.org/10.3938/jkps.55.2354
  13. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, "Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second," Opt. Express 18, 20029-20048 (2010). https://doi.org/10.1364/OE.18.020029
  14. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, "Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second," Opt. Express 18, 14685-14704 (2010). https://doi.org/10.1364/OE.18.014685
  15. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, "Megahertz OCT for ultrawide-field retinal imaging with a 1050nm Fourier domain mode-locked laser," Opt. Express 19, 3044-3062 (2011). https://doi.org/10.1364/OE.19.003044
  16. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. St. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003). https://doi.org/10.1364/OE.11.001980
  17. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for threedimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008). https://doi.org/10.1167/iovs.08-2127
  18. V. J. Srinivasan, R. Huber, I. Gorczynska, J. G. Fujimoto, J. Y. Jiang, P. Reisen, and A. E. Cable, "High-speed, highresolution optical coherence tomography and retinal imaging with a frequency-swept laser at 850 nm," Opt. Lett. 32, 361-363 (2007). https://doi.org/10.1364/OL.32.000361
  19. R. S. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Opt. Lett. 22, 340-342 (1997). https://doi.org/10.1364/OL.22.000340
  20. H. Lim, J. F. de Boer, B. H. Park, E. C. Lee, R. Yelin, and S. H. Yun, "Optical frequency domain imaging with a rapidly swept laser in the 815-870 nm range," Opt. Express 14, 5937-5944 (2006). https://doi.org/10.1364/OE.14.005937
  21. H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, "High-speed imaging of human retina in vivo with swept-source optical coherence tomography," Opt. Express 14, 12902-12908 (2006). https://doi.org/10.1364/OE.14.012902
  22. S.-W. Lee, C.-S. Kim, and B.-M. Kim, "External line-cavity wavelength-swept source at 850 nm for optical coherence tomography," IEEE Photon. Technol. Lett. 19, 176-178 (2007). https://doi.org/10.1109/LPT.2006.890043
  23. D. J. Faber, E. G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438 (2003). https://doi.org/10.1364/OL.28.001436
  24. J. U. Kang, J.-H. Han, X. Liu, and K. Zhang, "Commonpath optical coherence tomography for biomedical imaging and sensing," J. Opt. Soc. Korea 14, 1-13 (2010). https://doi.org/10.3807/JOSK.2010.14.1.001
  25. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25, 111-113 (2000). https://doi.org/10.1364/OL.25.000111
  26. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Nearinfrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004). https://doi.org/10.1364/OL.29.001647
  27. S. H. Yun, C. Boudoux, M. C. Pierce, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Extended-cavity semiconductor wavelength-swept laser for biomedical imaging," IEEE Photon. Technol. Lett. 16, 293-295 (2004). https://doi.org/10.1109/LPT.2003.820096
  28. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express 13, 3513-3528 (2005). https://doi.org/10.1364/OPEX.13.003513
  29. A. Bilenca, S. H. Yun, G. J. Tearney, and B. E. Bouma, "Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications," Opt. Lett. 31, 760-762 (2006). https://doi.org/10.1364/OL.31.000760
  30. M. Jeon, J. Zhang, and Z. Chen, "Characterization of Fourier domain mode-locked wavelength swept laser for optical coherence tomography imaging," Opt. Express 16, 3727-3737 (2008). https://doi.org/10.1364/OE.16.003727
  31. W. V. Sorin and D. M. Baney, "A simple intensity noise reduction technique for optical low-coherence reflectometry," IEEE Photon. Technol. Lett. 4, 1404-1406 (1992). https://doi.org/10.1109/68.180591
  32. A. N. S. Institute, "American national standard for safe use of lasers," in ANSI Z 136-1 (2000).
  33. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, "High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs," Opt. Express 16, 2547-2554 (2008). https://doi.org/10.1364/OE.16.002547
  34. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, ">400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging," Opt. Lett. 35, 2919-2921 (2010). https://doi.org/10.1364/OL.35.002919
  35. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, "Compact ultrafast reflective Fabry-Perot tunable lasers for OCT imaging applications," Proc. SPIE 7554, 75541F (2010).
  36. K. Totsuka, K. Isamoto, T. Sakai, A. Morosawa, and C. Chong, "MEMS scanner based swept source laser for optical coherence tomography," Proc. SPIE 7554, 75542Q (2010).

Cited by

  1. 800-nm-centered swept laser for spectroscopic optical coherence tomography vol.24, pp.4, 2014, https://doi.org/10.1088/1054-660X/24/4/045605
  2. Optical Monitoring of Tumors in BALB/c Nude Mice Using Optical Coherence Tomography vol.17, pp.1, 2013, https://doi.org/10.3807/JOSK.2013.17.1.091
  3. An efficient phase analysis-based wavenumber linearization scheme for swept source optical coherence tomography systems vol.12, pp.5, 2015, https://doi.org/10.1088/1612-2011/12/5/055601
  4. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter vol.13, pp.12, 2013, https://doi.org/10.3390/s130809669
  5. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems vol.61, pp.21, 2016, https://doi.org/10.1088/0031-9155/61/21/7652
  6. Soliton fission and supercontinuum generation in photonic crystal fibre for optical coherence tomography application vol.85, pp.5, 2015, https://doi.org/10.1007/s12043-015-1114-5