• Title/Summary/Keyword: surface structure control

Search Result 836, Processing Time 0.024 seconds

Digital current control for BLDC motor using variable structure controller and artificial neural network (가변구조제어기와 인공 신경회로망에 의한 BLDC모터의 디지털 전류제어)

  • 박영배;김대준;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.504-507
    • /
    • 1997
  • It is well known that Variable Structure Controller(VSC) is robust to parameters variation and disturbance but its performance depends on the design parameters such as switching gain and slope of sliding surface. This paper proposes a more robust VSC that is composed of local VSC's. Each local VSC considers the local system dynamics with narrow parameter variation and disturbance. First we optimize the local VSC's by use of Evolution Strategy, and next we use Artificial Neural Network to generalize the local VSC's and construct the overall VSC in order to cover the whole range of parameter variation and disturbance. Simulation on BLDC motor current control shows that the proposed VSC is superior to the conventional VSC.

  • PDF

Variable Structure Control for a System with Mismatched Disturbances (입력과 매칭되지 않는 외란을 갖는 시스템에 대한 가변구조제어)

  • Choi, Yun-Jong;Park, Poo-Gyeon
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.149-151
    • /
    • 2007
  • For several decades, VSC has gained much attention as one of the useful design tools for handling the practical system with uncertainties or disturbances. Generally, the disturbances in the matching condition can be perfectly rejected via VSC; however, these in the mismatching condition are known to be hardly rejected. There have been some trials on it, in which the resulting controls in fact belong to the class of robust control guaranteeing disturbance ${\gamma}$-attenuation. Therefore, in this paper, we propose a new Variable Structure Control (VSC) for a system with mismatched disturbances. The proposed controller is composed of linear and nonlinear parts; the former plays a role in stabilizing the system and the latter takes care of attenuating the disturbances. The main contribution is to introduce the concept of switching-zone, rather than switching-surface, that is designed through piece-wise Lyapunov functions. The resulting non-convex conditions are formulated with an iterative linear programming algorithm, which provides an excellent performance of almost rejecting the disturbances.

  • PDF

A Study on Welding Path Finding For The Large Structure Using Kalman Filter (칼만필터를 이용한 초대형 용접구조물의 용접선 추적에 관한 연구)

  • 주해호;이화조;김석환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 2000
  • In this Paper a basic technique of gantry robot control system has been developed to weld the curved part of a large structure. A welding robot is designed to rotate torch and make the torch angle normal to the welding surface. The Kalman filter is applied to obtain the smooth welding path signal from the noised Sensing data. A welding path finding algorithm has been developed in Turbo-C language.

  • PDF

A study on the optimal control of Long Stroke Fast Tool Servo Systems (장거리 구동용 FTS 의 최적 제어에 관한 연구)

  • 이상호;이찬홍;김갑순
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.818-821
    • /
    • 2004
  • With a rapid development in the area of micro and ultra precision technology, the micro surface machining of small size parts are explosively increased. Especially, to improve efficiency of various beams in lens and reflector, non-rotational symmetric form and several mm level heights changeable surface can be machined at a time. These geometric complex 3D surface cannot be machined by general short stroke FTS. The long stroke FTS if firmly needed to move directly several mm and have nm level positioning accuracy for the complex surface form. The long stroke FTS used linear motors to drive moving unit long and fine, aero static bearings to decrease friction and moving errors in guide way, optical linear scale with nm level resolution to measure position of FTS. Furthermore, to increase the performance of acceleration of FTS, the light material, such as AL is used for the structure and the high stiffness box type structure is selected. In this paper, the genetic algorithm approach is described to determine a set of design parameters for auto tuning. The authors have attempted to model the design problem with the objective of minimizing the error, such as variable pattern change. This method can give the better alternative than existing other method.

  • PDF

Wind tunnel tests of an irregular building and numerical analysis for vibration control by TLD

  • Jianchen Zhao;Jiayun Xu;Hang Jing
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Due to the irregular shape and the deviation of stiffness center and gravity center, buildings always suffer from complex surface load and vibration response under wind action. This study is dedicated to analyze the surface wind load and wind-induced response of an irregular building, and to discuss the possibility of top swimming pool as a TLD to diminish wind-induced vibration of the structure. Wind tunnel test was carried out on a hotel with irregular shape to analyze the wind load and structural response under 8 wind incident angles. Then a precise numerical model was established and calibrated through experimental results. The top swimming pool was designed according to the principle of frequency modulation, and equations of motion of the control system were derived theoretically. Finally, the wind induced response of the structure controlled by the pool was calculated numerically. The results show that both of wind loads and wind-induced responses of the structure are significantly different with wind incident angle varies, and the across-wind response is nonnegligible. The top swimming pool has acceptable damping effect, and can be designed as TLD to mitigate wind response.

Adsorption of Carbon Dioxide onto Tetraethylenepentamine Impregnated PMMA Sorbents with Different Pore Structure

  • Jo, Dong Hyun;Park, Cheonggi;Jung, Hyunchul;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.382-390
    • /
    • 2015
  • Poly(methyl methacrylate) (PMMA) supports and amine additives were investigated to adsorb $CO_2$. PMMA supports were fabricated by using different ratio of pore forming agents (porogen) to control the BET specific surface area, pore volume and distribution. Toluene and xylene are used for porogens. Supported amine sorbents were prepared by wet impregnation of tetraethylenepentamine (TEPA) on PMMA supports. So we could identify the effect of the pore structure of supports and the quantity of impregnated TEPA on the adsorption capacity. The increased amount of toluene as pore foaming agent resulted in the decreased average pore diameter and the increased BET surface area. Polymer supports with huge different pore distribution could be fabricated by controlling the ratio of porogen. After impregnation, the support with micropore structure is supposed the pore blocking and filling effect so that it has low $CO_2$ capacity and kinetics due to the difficulty of diffusing. Macropore structure indicates fast adsorption capacity and low influence of amine loading. In case of support with mesopore, it has high performance of adsorption capacity and kinetics. So high surface area and meso-/macro- pore structure is suitable for $CO_2$ capture.

Position Control of DC Motor Using the Sliding Mode Control with Distur bance Ovserver (외란 관측기를 가지는 슬라이딩 모드 제어를 사용한 직류 전동기의 위치 제어)

  • 문용기;이정훈;이대식;이주장;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.135-143
    • /
    • 1992
  • A novel sliding mode control with disturbance observer for position control of DC servo motor is presented. The conventional sliding mode controller changes the control structure depending on the state of switching surface and consequently, the control law is discontinuous and theoretically chatters at an infinite frequency. To overcome this problem in view of the practical implementation, the disturbance observer is used to compensate the effects of the parameter variations and the load disturvances. We can obtain the performance predetermined by the switching surface with continuous control law while the controlled system remains robust. The performance of the proposed controller with that of the conventional sliding mode controller through digital computer simulation and experiment.

Sliding Mode Control for Linear System with Mismatched Uncertainties (정합조건을 만족하지 않는 선형 시스템에 대한 슬라이딩 모드 제어)

  • Seong, Jae-Bong;Kwon, Sung-Ha;Park, Seung-Kyu;Jeung, Eun-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.3
    • /
    • pp.193-197
    • /
    • 2001
  • This paper presents a design method of sliding model control (SMC) for single input linear systems with mismatched uncertainties. We define a virtual state based on the controllable canonical form of the nominal system. And we defined a sliding surface for the augmented system with a virtual state. This sliding surface makes it possible to use the SMC technique with various types of controllers. In this paper, we construct a controller that combines SMC with robust controller. We design a robust controller for the system with mismatched uncertainties using a form of linear matrix inequality(LMI). We make a virtual state from this robust control input and the states of the nominal system. And we design a sliding model controller that stabilizes the overall closed-loop system.

  • PDF

An LMI-based Decentralized Sliding Mode Control Design Method for Large Scale Systems (대규모 시스템을 위한 LMI기반 비집중화 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.8
    • /
    • pp.651-655
    • /
    • 2005
  • In this paper, we consider the problem of designing decentralized sliding mode control laws far a class of large scale systems with mismatched uncertainties. We derive a sufficient condition far the existence of a linear switching surface in terms of a linear matrix inequalities(LMIs), and we parameterize the linear switching surfaces in terms of the solution matrices to the given LMI existence conditions. We also give an algorithm for designing decentralized switching feedback control laws. Finally, we give a design example in order to show the effectiveness of our method.

Eigenstructure Assigned Sliding Mode Control for Uncertain System (불확실 시스템을 고유구조 지정 슬라이딩 모드 제어)

  • Chun, Kyung-Han;Kim, Ga-Gue;Jeon, Hea-Jin;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.799-805
    • /
    • 2001
  • In this paper, we propose eigenstructure assigned sliding mode control for mismatched uncertain system. Variable structure control has the sliding mode in which the system is robust against the uncertainty and the sliding motion depends upon the sliding surface. Therefore, the surface design is one of the important problems. Also in mismatched cases, the uncertainty may affect on the sliding motion and may cause unexpected instability of the system. Thus, that should be considered, too. For robust sliding mode against the mismatched uncertainty, we suggest the design method of the sliding surface using the eigenstructure assignment, define an index as the measure of the robustness which shows the size of affordable unstructured uncertainty, and present the computation method. And also we propose the controller which can ensure the sliding mode and prove the robust stability of the proposed controller by using Lyapunov method. Finally we show the appropriateness of the proposed scheme for the mismatched uncertainty via the example.

  • PDF