• Title/Summary/Keyword: surface radiation

Search Result 2,143, Processing Time 0.046 seconds

Hybrid finite element model for wave transformation analysis (파랑 변형 해석을 위한 복합 유한요소 모형)

  • Jung Tae Hwa;Park Woo Sun;Suh Kyung Duck
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

Analysis of Light Environment to Turfgrass Growth under the Roof Membrane on Stadium (경기장 지붕의 막구조가 잔디생육에 미치는 광환경에 대한 영향분석)

  • Joo Young Kyoo;Lee Dong Ik;Song Kyoo D.;Shim Gyu-Yul
    • Asian Journal of Turfgrass Science
    • /
    • v.18 no.3
    • /
    • pp.119-128
    • /
    • 2004
  • This study was conducted to analyze the effect of roof membrane on light environment that influence on turfgrass growth under domed stadium. Roof structure on experimental plot was constructed with PTFE and PE same as Busan Asiad Main Stadium. Tested turfgrass species were combinations of cool-season grasses(Kentucky Bluegrass, perennial ryegrass, $KBG80+PR20\%,\;KBG33+PR33+Fine fescue33\%)$ and warm-season grasses(zoysiagrass, 'An-yang middle-leaf, 'Zenith', Bermudagrass) established with seeding or sodding. The experimental set-up and research work were initiated November 1999 and finished on August 2000 at near Busan Asiad Main Stadium. By the result of computer simulation of daylight radiant energies on the turf surface were lower than needs of normal sport turf growth. The shortage of radiant resulted pest infection on cool-season grass mixture compared with warm-season. But turf color and density showed the best results on Kentucky bluegrass or its mixture plot. Over all the results showed that the best quality of turfgrass growth was occurred on full sun area, and the next was under PTFE membrane. The application of artificial lighting system may increase the turfgrass growth under domed stadium(partially) covered with roof membrane.

Acoustic Field Analysis of Ultrasonic Focusing Transducer by Using Finite Element. Method and Hybrid Type Infinite Element Method (유한요소법과 하이브리드형 무한요소법을 이용한 초음파 집속변환자의 음장 해석)

  • Park, Soon-Jong;Yoon, Jong-Rak;Ha, Kang-Lyeol;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.36-43
    • /
    • 1995
  • This paper presents the lousing characteristics and the time. response of ultrasonic focusing transducer which is a coupled system with an electromechanical and an acoustical component. The Finite Element Method and the Hybrid Type Infinite Element Method are applied for the analysis. The position of the focal points and the resolutions is obtained from the loosing characteristics and the time response. It is found that the transducer with the damper, which stabilizes the displacement of the radiation surface, gives a better resolution. In conclusion, the results could be applied to the design and the performance analysis of the ultrasonic focusing transducer.

  • PDF

A study on the Development of Vertical Air Temperature Distribution Model in Atrium (아트리움의 수직온도 분포해석 프로그램의 개발에 관한 연구)

  • Kim, Y.I.;Cho, K.H.;Kim, K.W.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.3-11
    • /
    • 1997
  • Recently the construction of atrium buildings has increased but along with it many problems in thermal environment have arised. since the exterior wall of glass, indoor temperature is greatly influenced by weather conditions and since the space volume is very large, the vertical air temperature is not uniform. So, in this study, a Vertical Temperature Distribution Model was developed to predict the vertical air temperature of an atrium and evaluate the effects of the design parameters on the air temperature distribution of an atrium. To consider the characteristics of the vertical air temperature distribution in an atrium, the Satosh Togari's Macroscopic Model was used basically for the calculation of the vertical air temperature distribution in large space and the solar radiation analysis model and natural ventilation analysis model in atrium. And to calculate the unsteady-state inside wall surface temperature(boundary condition), the finite difference method was used. For the verification of the developed temperature distribution program, numerical evaluation of air flow by the ${\kappa}-{\varepsilon}$ turbulence model and in-situ test was conducted in parallel. The results of this study, the developed temperature distribution program was seen to predict the thermal condition of the atrium very accurately.

  • PDF

Effect of the building envelope on heating and cooling load in super tall building considering the meteorological changes with height (높이별 기상변화를 고려한 초고층 건축물의 외피종류별 냉난방 부하특성 분석)

  • Choi, Jong-Kyu;Kim, Yang-Soo;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.337-344
    • /
    • 2012
  • Today, the number of super tall buildings are under construction or being planed in Middle East and Asian Countries. For example the burj Khalifa, the tallest building in the world, is completed in 2008 and the height of that is about 800m. Also, Lotte World Tower is under construction in Korea. External environmental conditions such as wind speed, air temperature, humidity and solar radiation around the super tall building differs according to the building height due to the vertical micro climate change. However, the meteorological information used for AC design of building is obtained typically from standard surface meterological station data(~2m above the ground). In this paper the effect of the building envelope on heating and cooling load in super tall building considering the meteorological changes with height was analyzed with simulation method. As results of this research, the guideline to select the building envelop alternatives for super tall building will be suggested in this paper.

  • PDF

Near-infrared Subwavelength Imaging and Focusing Analysis of a Square Lattice Photonic Crystal Made from Partitioned Cylinders

  • Dastjerdi, Somayeh Rafiee;Ghanaatshoar, Majid;Hattori, Toshiaki
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.262-268
    • /
    • 2013
  • We study the focusing properties of a two-dimensional square-lattice photonic crystal (PC) comprising silica and germanium partitioned cylinders in air background. The finite difference time domain (FDTD) method with periodic boundary condition is utilized to calculate the dispersion band diagram and the FDTD method incorporating the perfectly matched layer boundary condition is employed to simulate the image formation. In contrast to the common square PCs in which the negative refraction effect occurs in the first photonic band without negative phase propagation, in our suggested model system, the frequency with negative refraction exists in the second band and in near-infrared region. In this case, the wave propagates with a negative phase velocity and the evanescent waves can be supported. We also discuss the dependency of the image resolution and its location on surface termination, source location, and slab thickness. According to the simulation results, spatial resolution of the proposed PC lens is below the radiation wavelength.

Nonthermal Sterilization and Shelf-life Extension of Seafood Products by Intense Pulsed Light Treatment (수산물의 비열살균 및 저장성 향상에 대한 광펄스의 효과)

  • Cheigh, Chan-Ick;Mun, Ji-Hye;Chung, Myong-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Intense pulsed light(IPL) has been highlighted as an innovative nonthermal sterilization technology that can kill spoilage or pathogenic microorganisms by using short-duration pulses of intense broad-spectrum electromagnetic radiation. This paper examines the inactivation effects of IPL on Listeria monocytogenes, Escherichia coli O157:H7, and Pseudomonas aeruginosa inoculated on seafood products such as salmon, flatfish, and shrimps and evaluates the possibility of extending the shelf-life of seafood products. The results indicate that the inactivation of microorganisms increased with an increase in IPL energy density($J/cm^2$) and a decrease in the distance between the sample surface and the lamp. In addition, temperature increases on the fish fillets during the treatments were well controlled within the range of 5.7~$9.8^{\circ}C$. The IPL treatment had a significant positive effect on the storage stability of seafood products at the storage temperature of $4^{\circ}C$ for 12 days. These results suggest that the storage period for fish fillets can be extended from 4 days to 6~8 days through the IPL treatment.

Time Domain Analysis of Ship Motion in Waves Using Finite Element Method (유한요소법을 이용한 파랑 중 선박운동의 시간영역 해석기법 개발)

  • Nam, Bo-Woo;Sung, Hong-Gun;Hong, Sa-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.16-23
    • /
    • 2009
  • The three-dimensional ship motion with forward speed was solved by a finite element method in the time domain. A boundary value problem was described in the frame of a fixed-body reference, and the problem was formulated according to Double-Body and Neumann-Kelvin linearizations. Laplace's equation with boundary conditions was solved by a classical finite element method based on the weak formulation. Chebyshev filtering was used to get rid of an unwanted saw-tooth wave and a wave damping zone was adopted to impose a numerical radiation condition. The time marching of the free surface was performed by the 4th order Adams-Bashforth-Moulton method. Wigley I and Wigely III models were considered for numerical validation. The hydrodynamic coefficients and wave exciting forces were validated by a comparison with experimental data and the numerical results of the Wigley I. The effects of the linearization are also discussed. The motion RAO was also checked with a Wigley III model through mono-chromatic and multi-chromatic regular waves.

Investigation of Oxygen Incorporation in AlGaN/GaN Heterostructures

  • Jang, Ho-Won;Baik, Jeong-Min;Lee, Jong-Lam;Shin, Hyun-Joon;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.96-101
    • /
    • 2003
  • Direct evidence on the incorporation of high concentration of oxygen into undoped AlGaN layers for the AlGaN/GaN heterostuctures is provided by scanning photoemission microscopy using synchrotron radiation. In-situ annealing at $1000^{\circ}C$ resulted in a significant increase in the oxygen concentration at the AlGaN surface due to the predominant formation of Al-O bonds. The oxygen incorporation into the AlGaN layers resulting from the high reactivity of Al to oxygen can enhance the tunneling-assisted transport of electrons at the metal/AlGaN interface, leading to the reduction of the Schottky barrier height and the increase of the sheet carrier concentration near the AlGaN/GaN interface.

A Study on the Temperature Reduction Effect of Street Green Area (도로변 가로녹지 유형이 기상에 미치는 영향)

  • Kim, Jeong-Ho;Choi, Won-Jun;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.26 no.12
    • /
    • pp.1363-1374
    • /
    • 2017
  • Global climate change caused by industrialization has caused abnormal weather conditions such as urban temperatures and tropical nights, urban heat waves, heat waves, and heavy rains. Therefore, the study tried to analyze climate conditions and weather conditions in the streets and analyze climate factors and meteorological factors that lead to inconvenience to citizens. In the case of trees, the overall temperature, surface temperature, solar irradiance, and net radiation were measured low, and the temperature was lower in the Pedestrian road than in roads. The dry bulb temperature, the black bulb temperature, and the wet bulb temperature for the thermal evaluation showed the same tendency. In the case of thermal evaluation, there was a similar tendency to temperature in WBGT, MRT, and UTCI, and varied differences between types. Although the correlation between the meteorological environment and the thermal environment showed a statistically significant significance, the difference between the measured items was not significant. The study found that the trees were generally pleasant to weather and thermal climate in the form of trees, and the differences were mostly documented.