Abstract
The three-dimensional ship motion with forward speed was solved by a finite element method in the time domain. A boundary value problem was described in the frame of a fixed-body reference, and the problem was formulated according to Double-Body and Neumann-Kelvin linearizations. Laplace's equation with boundary conditions was solved by a classical finite element method based on the weak formulation. Chebyshev filtering was used to get rid of an unwanted saw-tooth wave and a wave damping zone was adopted to impose a numerical radiation condition. The time marching of the free surface was performed by the 4th order Adams-Bashforth-Moulton method. Wigley I and Wigely III models were considered for numerical validation. The hydrodynamic coefficients and wave exciting forces were validated by a comparison with experimental data and the numerical results of the Wigley I. The effects of the linearization are also discussed. The motion RAO was also checked with a Wigley III model through mono-chromatic and multi-chromatic regular waves.