• Title/Summary/Keyword: supercritical 2

Search Result 147, Processing Time 0.023 seconds

Theoretical Studies for the Supercritical CO2 Solubility of Organophosphorous Molecules: Lewis Acid-Base Interactions and C-H···O Weak Hydrogen Bonding

  • Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2454-2458
    • /
    • 2007
  • Exploring the basic concepts for the design of CO2-philic molecules is important due to the possibility for “green” chemistry in supercritical CO2 as substitute solvent systems. The Lewis acid-base interactions and C?H…O weak hydrogen bonding were suggested as two key factors for the solubility of CO2-philic molecules. We have performed high level quantum mechanical calculations for the van der Waals complexes of CO2 with trimethylphosphate and trimethylphosphine oxide, which have long been used for metal extractants in supercritical CO2 fluid. Structures and energies were calculated using the MP2/6-31+G(d) and recently developed multilevel methods. These studies indicate that the Lewis acid-base interactions have larger impact on the stability of structure than the C?H…O weak hydrogen bonding. The weak hydrogen bonds in trimethylphosphine oxide have an important role to the large supercritical CO2 solubility when a metal is bound to the oxygen atom of the P=O group. Trimethylphosphate has many Lewis acid-base interaction sites so that it can be dissolved into supercritical CO2 easily even when it has metal ion on the oxygen atom of the P=O group, which is indispensable for a good extractant.

Solubilities of Salen Derivatives and Their Cobalt Complex in Liquid and Supercritical CO2

  • Koh, Seung-Hyun;Jeon, Byung-Wan;Kim, Ha-Kwon;Park, Kwang-Heon;Kim, Hong-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.471-475
    • /
    • 2004
  • The solubility of N,N'-Bis(salicylidene) ethylenediamine (n-salen) and N,N'-bis(3,5-di-tert-butylsalicylidene) ethylenediamine (t-butyl-salen) was studied with in-situ UV-VIS spectrometer. n-Salen is 3-5 times more soluble than t-butyl-salen in liquid or supercritical $CO_2$. This behavior may be attributed to Lewis acid-base interaction between salen and $CO_2$. The chelation of salen with $Co^{++}$ ion in supercritical condition was confirmed to be fast enough above room temperature. However, the metal ion extraction capability of t-butyl salen is relatively poor because of its low solubility and ionic nature of complex.

The optimization for the straight-channel PCHE size for supercritical CO2 Brayton cycle

  • Xu, Hong;Duan, Chengjie;Ding, Hao;Li, Wenhuai;Zhang, Yaoli;Hong, Gang;Gong, Houjun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1786-1795
    • /
    • 2021
  • Printed Circuit Heat Exchanger (PCHE) is a widely used heat exchanger in the supercritical carbon dioxide (sCO2) Brayton cycle because it can work under high temperature and pressure, and has been a hot topic in Next Generation Nuclear Plant (NGNP) projects for use as recuperators and condensers. Most previous studies focused on channel structures or shapes. However, no clear advancement has so far been seen in the allover size of the PCHE. In this paper, we proposed an optimal size of the PCHE with a fixed volume. Two boundary conditions of PCHE were simulated, respectively. When the volume of PCHE was fixed, the heat transfer rate and pressure loss were picked as the optimization objectives. The Pareto front was obtained by the Multi-objective optimization procedure. We got the optimized number of PCHE channels under two different boundary conditions from the Pareto front. The comprehensive performance can be increased by 5.3% while holding in the same volume. The numerical results from this study can be used to improve the design of PCHE with straight channels.

Permeability and Strength of Cements Exposed to Supercritical CO2 for Varying Periods (초임계 CO2 - 시멘트 반응 전후의 투수율 및 강도 변화)

  • Lee, Hikweon;Kim, Kideok;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • Chemical reaction tests were performed to assess the properties of hardened specimens of cement pastes (KS-1 Portland and Class G) exposed to supercritical CO2 for 1, 10, and 100 days. After exposure, the samples' measured permeability and strength were compared with values measured for pristine samples. The pristine cements had permeabilities of 0.009~0.025 mD, which increased by one order of magnitude after 100 days of exposure (to 0.11~0.29 mD). The enhancement of permeability is attributed to the stress release experienced by the samples after removal from the pressure vessel after exposure. Despite its enhancement, the measured permeability mostly remained lower than the API (American Petroleum Institute) recommended maximum value of 0.2 mD. The degradation of the cement samples due to exposure to supercritical CO2 led to a layer of altered material advancing inwards from the sample edges. The Vickers hardness in the altered zone was much higher than that in the unaltered zone, possibly owing to the increase in density and the decrease in porosity due to the carbonation that occurred in the altered zone. Hardness close to the edge within the altered zone was found to have decreased significantly, which is attributed to the conversion of C-S-H into less-strong amorphous silica.

Performance analysis of S-CO2 recompression Brayton cycle based on turbomachinery detailed design

  • Zhang, Yuandong;Peng, Minjun;Xia, Genglei;Wang, Ge;Zhou, Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2107-2118
    • /
    • 2020
  • The nuclear reactor coupled with supercritical carbon dioxide (S-CO2) Brayton cycle has good prospects in generation IV reactors. Turbomachineries (turbine and compressor) are important work equipment in circulatory system, whose performances are critical to the efficiency of the energy conversion system. However, the sharp variations of S-CO2 thermophysical properties make turbomachinery performances more complex than that of traditional working fluids. Meanwhile, almost no systematic analysis has considered the effects of turbomachinery efficiency under different conditions. In this paper, an in-house code was developed to realize the geometric design and performance prediction of S-CO2 turbomachinery, and was coupled with systematic code for Brayton cycle characteristics analysis. The models and methodology adopted in calculation code were validated by experimental data. The effects of recompressed fraction, pressure and temperature on S-CO2 recompression Brayton cycle were studied based on detailed design of turbomachinery. The results demonstrate that the recompressed fraction affects the turbomachinery characteristic by changing the mass flow and effects the system performance eventually. By contrast, the turbomachinery efficiency is insensitive to variation in pressure and temperature due to almost constant mass flow. In addition, the S-CO2 thermophysical properties and the position of minimum temperature difference are significant influential factors of cyclic performance.

A PIC Simulation Study for Electron Preacceleration at Weak Quasi-Perpendicular Galaxy Cluster Shocks

  • Ha, Ji-Hoon;Kim, Sunjung;Ryu, Dongsu;Kang, Hyesung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.36.2-36.2
    • /
    • 2021
  • In the outskirts of galaxy clusters, weak shocks with Ms < ~3 appear as radio relics where the synchrotron radiation is emitted from cosmic-ray (CR) electrons. To understand the production of CR electrons through the so-called diffusive shock acceleration (DSA), the electron injection into the DSA process at shocks in the hot intracluster medium (ICM) has to be described. However, the injection remains as an unsolved, outstanding problem. To explore this problem, 2D Particle-in-Cell (PIC) simulations were performed. In this talk, we present the electron preacceleration mechanism mediated by multi-scale plasma waves in the shock transition zone. In particular, we find that the electron preacceleration is effective only in the supercritical shocks, which have the sonic Mach number Ms > Mcrit ≈ 2.3 in the high-beta (β~100) plasma of the ICM, because the Alfven ion cyclotron instability operates and hence multi-scale plasma waves are induced only in such supercritical shocks. Our findings will help to understand the nature of radio relics in galaxy clusters.

  • PDF

Collagen Extraction Using Supercritical CO2 from Animal-Derived Waste Tissue (동물 유래 폐지방으로부터 초임계 CO2를 이용한 콜라겐 추출)

  • No, Seong-Rae;Shin, Yong-Woo;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.386-391
    • /
    • 2022
  • This study is about a technique for obtaining collagen by extracting fat by treating collagen-containing liposuction effluent in the presence of supercritical fluid. Using a supercritical solvent, a collagen extract could be obtained from animal-derived fat in a short time (about 6 hours), and about 2-3% of collagen by mass compared to the raw material could be obtained. The presence of collagen in the extract obtained by supercritical extraction was confirmed by SDS-PAGE, and it was confirmed that it was type 1 collagen having a relatively large molecular weight. In addition, the growth factors of IGF-1, bFGF, VEGF and NGF were analyzed to find out which growth factors were present in the collagen obtained by supercritical extraction, and it was found that these growth factors were contained in the extract. There was no significant difference in DNA content per mg of sample before and after supercritical treatment. Further in-depth studies are likely to be needed on decellularization technology using the supercritical process. In conclusion, the extracellular matrix obtained through the solvent extraction process using a supercritical fluid contains growth factors above a certain amount even after decellularization and removal of fat, so that it was found that not only biocompatibility is greatly increased, but also tissue regeneration can be rapidly induced.

Design and Evaluation of Small-scale Supercritical Carbon Dioxide System with Solar Heat Source (태양열 적용을 위한 소형 초임계 이산화탄소 실험설비 설계 및 평가)

  • Choi, Hundong;So, Wonho;Lee, Jeongmin;Cho, Kyungchan;Lee, Kwon-yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.403-410
    • /
    • 2020
  • This paper focuses on the design of a 12-kW small-scale supercritical CO2 test loop. A theoretical study, stabilization, and optimization of carbon dioxide were carried out with the application of a solar heat source based on solar thermal data in Pohang. The thermodynamic cycle of the test facility is a Rankine cycle (transcritical cycle), which contains liquid, gas, and supercritical CO2. The system is designed to achieve 6.98% efficiency at a maximum pressure of 12 MPa and a maximum temperature of 70℃. In addition, the optimum turbine inlet temperature and pressure were calculated to increase the cycle efficiency, and the application of an internal heat exchanger (IHX) was simulated. It was found that the maximum efficiency increases to 18.75%. The simulation confirmed that the efficiency of the cycle is 6.7% in May and 6.26% in June.

Heat transfer performance of a helical heat exchanger depending on coil distance and flow guide for supercritical cryo-compressed hydrogen

  • Cha, Hojun;Choi, Youngjun;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.62-67
    • /
    • 2022
  • Liquid hydrogen (LH2) has a higher density than gaseous hydrogen, so it has high transport efficiency and can be stored at relatively low pressure. In order to use efficient bulk hydrogen in the industry, research for the LH2 supply system is needed. In the high-pressure hydrogen station based on LH2 currently being developed in Korea, a heat exchanger is used to heat up supercritical hydrogen at 700 bar and 60 K, which is pressurized by a cryogenic high-pressure pump, to gas hydrogen at 700 bar and 300 K. Accordingly, the heat exchanger used in the hydrogen station should consider the design of high-pressure tubes, miniaturization, and freezing prevention. A helical heat exchanger generates secondary flow due to the curvature characteristics of a curved tube and can be miniaturized compared to a straight one on the same heat transfer length. This paper evaluates the heat transfer performance through parametric study on the distance between coils, guide effect, and anti-icing design of helical heat exchanger. The helical heat exchanger has better heat transfer performance than the straight tube exchanger due to the influence of the secondary flow. When the distance between the coils is uniform, the heat transfer is enhanced. The guide between coils increases the heat transfer performance by increasing the heat transfer length of the shell side fluid. The freezing is observed around the inlet of distribution tube wall, and to solve this problem, an anti-icing structure and a modified operating condition are suggested.

Highly CO2-soluble 5-Amido-8-hydroxyquinoline Chelating Agents for Extraction of Metals in Sc-CO2

  • Chang, Fei;Park, Seo-Hun;Kim, Hakwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1327-1331
    • /
    • 2008
  • Novel $CO_2$-soluble 8-hydroxyquinoline (8-HQ) chelating agents were synthesized and evaluated for solubility and metal ion extraction ability in supercritical $CO_2\;(Sc-CO_2)$. Among them, secondary amide-containing 8- HQ derivatives cannot be dispersed well into Sc-$CO_2$, but tertiary amide-containing derivatives can dissolve completely in Sc-$CO_2$ even at low CO2 pressures, perhaps owing to the predominant intermolecular interaction between the chelating agent and the $CO_2$ molecule. Based on 8-HQ chelating agent solubility data, we investigated the extraction of metal ions ($Co^{2+}$, $Cu^{2+}$, $Sr^{2+}$, $Cd^{2+}$, and $Zn^{2+}$) using two highly $CO_2$-soluble 8-HQ derivatives (4d, 4e) in Sc-$CO_2$. The extraction efficiency of tertiary amide-containing 8-HQ ligands, both fluorinated and non-fluorinated forms, was dramatically increased in the presence of diethyl amine (organic base). We suggest that diethyl amine could play an important synergistic role in the stronger metal binding ability of 8-HQ through an in situ deprotonation reaction in Sc-$CO_2$ medium.