Acknowledgement
The authors would like to acknowledge the financial support by National Natural Science Foundation of China (Grant No. 11705188).
References
- Y. Yu, W. Bai, Y. Wang, Y. Zhang, H. Li, M. Yao, H. Wang, Coupled simulation of the combustion and fluid heating of a 300 MW supercritical CO2 boiler, Appl. Therm. Eng. 113 (2017) 259-267. https://doi.org/10.1016/j.applthermaleng.2016.11.043
- A. Moisseytsev, J.J. Sienicki, Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor, Nucl. Eng. Des. 239 (2009) 1362-1371. https://doi.org/10.1016/j.nucengdes.2009.03.017
- R. Singh, S. Miller, A. Rowlands, P.A. Jacobs, Dynamic characteristics of a direct-heated supercritical carbon- dioxide Brayton cycle in a solar thermal power plant, Energy 50 (2013) 194-204. https://doi.org/10.1016/j.energy.2012.11.029
- S.K. Mylavarapu, X. Sun, R.E. Glosup, R.N. Christensen, M.W. Patterson, Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility, Appl. Therm. Eng. 65 (2014) 605-614. https://doi.org/10.1016/j.applthermaleng.2014.01.025
- J.W. Seo, Y.H. Kim, D. Kim, Y.D. Choi, K.J. Lee, Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers, Entropy 17 (2015) 3438-3457. https://doi.org/10.3390/e17053438
- Z. Zhao, Y. Zhang, X. Chen, X. Ma, S. Yang, S. Li, A numerical study on condensation flow and heat transfer of refrigerant in minichannels of printed circuit heat exchanger, Int. J. Refrig. 102 (2019) 96-111. https://doi.org/10.1016/j.ijrefrig.2019.03.016
- Z. Ren, C. Zhao, P. Jiang, H. Bo, Investigation on local convection heat transfer of supercritical CO2 during cooling in horizontal semicircular channels of printed circuit heat exchanger, Appl. Therm. Eng. 157 (2019) 113697. https://doi.org/10.1016/j.applthermaleng.2019.04.107
- S.J. Yoon, J.E. Obrien, M. Chen, P. Sabharwall, X. Sun, Development and validation of Nusselt number and friction factor correlations for laminar flow in semi-circular zigzag channel of printed circuit heat exchanger, Appl. Therm. Eng. 123 (2017) 1327-1344. https://doi.org/10.1016/j.applthermaleng.2017.05.135
- J. Pan, J. Wang, L. Tang, J. Bai, R. Li, Y. Lu, G. Wu, Numerical investigation on thermal-hydraulic performance of a printed circuit LNG vaporizer, Appl. Therm. Eng. 165 (2020) 114447. https://doi.org/10.1016/j.applthermaleng.2019.114447
- H. Zhang, J. Guo, X. Huai, K. Cheng, X. Cui, Studies on the thermal-hydraulic performance of zigzag channel with supercritical pressure CO2, J. Supercrit. Fluids 148 (2019) 104-115. https://doi.org/10.1016/j.supflu.2019.03.003
- A.M. Aneesh, A. Sharma, A. Srivastava, P. Chaudhury, Effects of wavy channel configurations on thermal- hydraulic characteristics of Printed Circuit Heat Exchanger (PCHE), Int. J. Heat Mass Tran. 118 (2018) 304-315. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.111
- Y.J. Baik, S. Jeon, B. Kim, D. Jeon, C. Byon, Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors, Int. J. Heat Mass Tran. 114 (2017) 809-815. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.119
- X. Xu, T. Ma, L. Li, M. Zeng, Y. Chen, Y. Huang, Q. Wang, Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle, Appl. Therm. Eng. 70 (2014) 867-875. https://doi.org/10.1016/j.applthermaleng.2014.05.040
- X. Cui, J. Guo, X. Huai, K. Cheng, H. Zhang, M. Xiang, Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2, Int. J. Heat Mass Tran. 121 (2018) 354-366. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.015
- F. Chen, L. Zhang, X. Huai, J. Li, H. Zhang, Z. Liu, Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil, Nucl. Eng. Des. 315 (2017) 42-50. https://doi.org/10.1016/j.nucengdes.2017.02.014
- G. Koo, S. Lee, K. Kim, Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling, Appl. Therm. Eng. 72 (2014) 90-96. https://doi.org/10.1016/j.applthermaleng.2013.12.009
- H. Shi, T. Ma, W. Chu, Q. Wang, Optimization of inlet part of a microchannel ceramic heat exchanger using surrogate model coupled with genetic algorithm, Energy Convers. Manag. 149 (2017) 988-996. https://doi.org/10.1016/j.enconman.2017.04.035
- W. Chu, X. Li, T. Ma, Y. Chen, Q. Wang, Study on hydraulic and thermal performance of printed circuit heat transfer s urface with distributed airfoil fins, Appl. Therm. Eng. 114 (2017) 1309-1318. https://doi.org/10.1016/j.applthermaleng.2016.11.187
- S.M. Lee, K.Y. Kim, Shape optimization of a printed-circuit heat exchanger to enhance thermal-hydraulic performance, Proceedings of International Congress on Advances in Nuclear Power Plants 1 (2012), 12363.
- M. Saeed, M.H. Kim, Thermal-hydraulic analysis of sinusoidal fin-based printed circuit heat exchangers for supercritical CO2 Brayton cycle, Energy Convers. Manag. 193 (2019) 124-139. https://doi.org/10.1016/j.enconman.2019.04.058
- J.G. Kwon, T.H. Kim, H.S. Park, J.E. Cha, M.H. Kim, Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function, Nucl. Eng. Des. 298 (2016) 192-200. https://doi.org/10.1016/j.nucengdes.2015.12.012
- Y. Yang, H. Li, M. Yao, Y. Zhang, C. Zhang, L. Zhang, S. Wu, Optimizing the size of a printed circuit heat exchanger by multi-objective genetic algorithm, Appl. Therm. Eng. 167 (2020) 114811. https://doi.org/10.1016/j.applthermaleng.2019.114811
- A. Meshram, A.K. Jaiswal, S.D. Khivsara, J.D. Ortega, C. Ho, R. Bapat, P. Dutta, Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications, Appl. Therm. Eng. 109 (2016) 861-870. https://doi.org/10.1016/j.applthermaleng.2016.05.033
- Modelica Association, Modelica specification 3.3, 2016.
- E.W. Lemmon, M.L. Huber, M.O. Mclinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Propert Ies-REFPROP 9.0, NIST NSRDS, 2010.
- V. Gnielinski, New equations for heat and mass transfer in the turbulent flow in pipes and channels, in: NASA STI/recon technical report A, 75, 1975, pp. 8-16.
- I.H. Kim, H.C. No, J.I. Lee, B.G. Jeon, Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations, Nucl. Eng. Des. 239 (11) (2009) 2399-2408. https://doi.org/10.1016/j.nucengdes.2009.07.005
- S.M. Lee, K.Y. Kim, Shape optimization of a printed-circuit heat exchanger to enhance thermal-hydraulic performance, in: International Congress on Advances in Nuclear Power Plants, ICAPP, 2012, 2012.
Cited by
- Performance Analysis of a Printed Circuit Heat Exchanger with a Novel Mirror-Symmetric Channel Design vol.14, pp.14, 2021, https://doi.org/10.3390/en14144252